Step |
Hyp |
Ref |
Expression |
1 |
|
fsumfldivdiag.1 |
|- ( ph -> A e. RR ) |
2 |
|
fsumfldivdiag.2 |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> B e. CC ) |
3 |
|
fzfid |
|- ( ph -> ( 1 ... ( |_ ` A ) ) e. Fin ) |
4 |
|
fzfid |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 ... ( |_ ` ( A / n ) ) ) e. Fin ) |
5 |
1
|
fsumfldivdiaglem |
|- ( ph -> ( ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) -> ( m e. ( 1 ... ( |_ ` A ) ) /\ n e. ( 1 ... ( |_ ` ( A / m ) ) ) ) ) ) |
6 |
1
|
fsumfldivdiaglem |
|- ( ph -> ( ( m e. ( 1 ... ( |_ ` A ) ) /\ n e. ( 1 ... ( |_ ` ( A / m ) ) ) ) -> ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) ) |
7 |
5 6
|
impbid |
|- ( ph -> ( ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) <-> ( m e. ( 1 ... ( |_ ` A ) ) /\ n e. ( 1 ... ( |_ ` ( A / m ) ) ) ) ) ) |
8 |
3 3 4 7 2
|
fsumcom2 |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ m e. ( 1 ... ( |_ ` ( A / n ) ) ) B = sum_ m e. ( 1 ... ( |_ ` A ) ) sum_ n e. ( 1 ... ( |_ ` ( A / m ) ) ) B ) |