Step |
Hyp |
Ref |
Expression |
1 |
|
fsumge0.1 |
|- ( ph -> A e. Fin ) |
2 |
|
fsumge0.2 |
|- ( ( ph /\ k e. A ) -> B e. RR ) |
3 |
|
fsumge0.3 |
|- ( ( ph /\ k e. A ) -> 0 <_ B ) |
4 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
5 |
|
ax-resscn |
|- RR C_ CC |
6 |
4 5
|
sstri |
|- ( 0 [,) +oo ) C_ CC |
7 |
6
|
a1i |
|- ( ph -> ( 0 [,) +oo ) C_ CC ) |
8 |
|
ge0addcl |
|- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x + y ) e. ( 0 [,) +oo ) ) |
9 |
8
|
adantl |
|- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> ( x + y ) e. ( 0 [,) +oo ) ) |
10 |
|
elrege0 |
|- ( B e. ( 0 [,) +oo ) <-> ( B e. RR /\ 0 <_ B ) ) |
11 |
2 3 10
|
sylanbrc |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,) +oo ) ) |
12 |
|
0e0icopnf |
|- 0 e. ( 0 [,) +oo ) |
13 |
12
|
a1i |
|- ( ph -> 0 e. ( 0 [,) +oo ) ) |
14 |
7 9 1 11 13
|
fsumcllem |
|- ( ph -> sum_ k e. A B e. ( 0 [,) +oo ) ) |
15 |
|
elrege0 |
|- ( sum_ k e. A B e. ( 0 [,) +oo ) <-> ( sum_ k e. A B e. RR /\ 0 <_ sum_ k e. A B ) ) |
16 |
15
|
simprbi |
|- ( sum_ k e. A B e. ( 0 [,) +oo ) -> 0 <_ sum_ k e. A B ) |
17 |
14 16
|
syl |
|- ( ph -> 0 <_ sum_ k e. A B ) |