Metamath Proof Explorer


Theorem fsumge0cl

Description: The finite sum of nonnegative reals is a nonnegative real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses fsumge0cl.a
|- ( ph -> A e. Fin )
fsumge0cl.b
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,) +oo ) )
Assertion fsumge0cl
|- ( ph -> sum_ k e. A B e. ( 0 [,) +oo ) )

Proof

Step Hyp Ref Expression
1 fsumge0cl.a
 |-  ( ph -> A e. Fin )
2 fsumge0cl.b
 |-  ( ( ph /\ k e. A ) -> B e. ( 0 [,) +oo ) )
3 0xr
 |-  0 e. RR*
4 3 a1i
 |-  ( ph -> 0 e. RR* )
5 pnfxr
 |-  +oo e. RR*
6 5 a1i
 |-  ( ph -> +oo e. RR* )
7 rge0ssre
 |-  ( 0 [,) +oo ) C_ RR
8 7 2 sselid
 |-  ( ( ph /\ k e. A ) -> B e. RR )
9 1 8 fsumrecl
 |-  ( ph -> sum_ k e. A B e. RR )
10 9 rexrd
 |-  ( ph -> sum_ k e. A B e. RR* )
11 3 a1i
 |-  ( ( ph /\ k e. A ) -> 0 e. RR* )
12 5 a1i
 |-  ( ( ph /\ k e. A ) -> +oo e. RR* )
13 icogelb
 |-  ( ( 0 e. RR* /\ +oo e. RR* /\ B e. ( 0 [,) +oo ) ) -> 0 <_ B )
14 11 12 2 13 syl3anc
 |-  ( ( ph /\ k e. A ) -> 0 <_ B )
15 1 8 14 fsumge0
 |-  ( ph -> 0 <_ sum_ k e. A B )
16 9 ltpnfd
 |-  ( ph -> sum_ k e. A B < +oo )
17 4 6 10 15 16 elicod
 |-  ( ph -> sum_ k e. A B e. ( 0 [,) +oo ) )