Step |
Hyp |
Ref |
Expression |
1 |
|
fsumge0cl.a |
|- ( ph -> A e. Fin ) |
2 |
|
fsumge0cl.b |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,) +oo ) ) |
3 |
|
0xr |
|- 0 e. RR* |
4 |
3
|
a1i |
|- ( ph -> 0 e. RR* ) |
5 |
|
pnfxr |
|- +oo e. RR* |
6 |
5
|
a1i |
|- ( ph -> +oo e. RR* ) |
7 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
8 |
7 2
|
sselid |
|- ( ( ph /\ k e. A ) -> B e. RR ) |
9 |
1 8
|
fsumrecl |
|- ( ph -> sum_ k e. A B e. RR ) |
10 |
9
|
rexrd |
|- ( ph -> sum_ k e. A B e. RR* ) |
11 |
3
|
a1i |
|- ( ( ph /\ k e. A ) -> 0 e. RR* ) |
12 |
5
|
a1i |
|- ( ( ph /\ k e. A ) -> +oo e. RR* ) |
13 |
|
icogelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ B e. ( 0 [,) +oo ) ) -> 0 <_ B ) |
14 |
11 12 2 13
|
syl3anc |
|- ( ( ph /\ k e. A ) -> 0 <_ B ) |
15 |
1 8 14
|
fsumge0 |
|- ( ph -> 0 <_ sum_ k e. A B ) |
16 |
9
|
ltpnfd |
|- ( ph -> sum_ k e. A B < +oo ) |
17 |
4 6 10 15 16
|
elicod |
|- ( ph -> sum_ k e. A B e. ( 0 [,) +oo ) ) |