Step |
Hyp |
Ref |
Expression |
1 |
|
fsumge0.1 |
|- ( ph -> A e. Fin ) |
2 |
|
fsumge0.2 |
|- ( ( ph /\ k e. A ) -> B e. RR ) |
3 |
|
fsumge0.3 |
|- ( ( ph /\ k e. A ) -> 0 <_ B ) |
4 |
|
fsumge1.4 |
|- ( k = M -> B = C ) |
5 |
|
fsumge1.5 |
|- ( ph -> M e. A ) |
6 |
4
|
eleq1d |
|- ( k = M -> ( B e. CC <-> C e. CC ) ) |
7 |
2
|
recnd |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
8 |
7
|
ralrimiva |
|- ( ph -> A. k e. A B e. CC ) |
9 |
6 8 5
|
rspcdva |
|- ( ph -> C e. CC ) |
10 |
4
|
sumsn |
|- ( ( M e. A /\ C e. CC ) -> sum_ k e. { M } B = C ) |
11 |
5 9 10
|
syl2anc |
|- ( ph -> sum_ k e. { M } B = C ) |
12 |
5
|
snssd |
|- ( ph -> { M } C_ A ) |
13 |
1 2 3 12
|
fsumless |
|- ( ph -> sum_ k e. { M } B <_ sum_ k e. A B ) |
14 |
11 13
|
eqbrtrrd |
|- ( ph -> C <_ sum_ k e. A B ) |