| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumge0.1 |  |-  ( ph -> A e. Fin ) | 
						
							| 2 |  | fsumge0.2 |  |-  ( ( ph /\ k e. A ) -> B e. RR ) | 
						
							| 3 |  | fsumge0.3 |  |-  ( ( ph /\ k e. A ) -> 0 <_ B ) | 
						
							| 4 |  | fsumge1.4 |  |-  ( k = M -> B = C ) | 
						
							| 5 |  | fsumge1.5 |  |-  ( ph -> M e. A ) | 
						
							| 6 | 4 | eleq1d |  |-  ( k = M -> ( B e. CC <-> C e. CC ) ) | 
						
							| 7 | 2 | recnd |  |-  ( ( ph /\ k e. A ) -> B e. CC ) | 
						
							| 8 | 7 | ralrimiva |  |-  ( ph -> A. k e. A B e. CC ) | 
						
							| 9 | 6 8 5 | rspcdva |  |-  ( ph -> C e. CC ) | 
						
							| 10 | 4 | sumsn |  |-  ( ( M e. A /\ C e. CC ) -> sum_ k e. { M } B = C ) | 
						
							| 11 | 5 9 10 | syl2anc |  |-  ( ph -> sum_ k e. { M } B = C ) | 
						
							| 12 | 5 | snssd |  |-  ( ph -> { M } C_ A ) | 
						
							| 13 | 1 2 3 12 | fsumless |  |-  ( ph -> sum_ k e. { M } B <_ sum_ k e. A B ) | 
						
							| 14 | 11 13 | eqbrtrrd |  |-  ( ph -> C <_ sum_ k e. A B ) |