Step |
Hyp |
Ref |
Expression |
1 |
|
fsumharmonic.a |
|- ( ph -> A e. RR+ ) |
2 |
|
fsumharmonic.t |
|- ( ph -> ( T e. RR /\ 1 <_ T ) ) |
3 |
|
fsumharmonic.r |
|- ( ph -> ( R e. RR /\ 0 <_ R ) ) |
4 |
|
fsumharmonic.b |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> B e. CC ) |
5 |
|
fsumharmonic.c |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> C e. RR ) |
6 |
|
fsumharmonic.0 |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> 0 <_ C ) |
7 |
|
fsumharmonic.1 |
|- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ T <_ ( A / n ) ) -> ( abs ` B ) <_ ( C x. n ) ) |
8 |
|
fsumharmonic.2 |
|- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ ( A / n ) < T ) -> ( abs ` B ) <_ R ) |
9 |
|
fzfid |
|- ( ph -> ( 1 ... ( |_ ` A ) ) e. Fin ) |
10 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` A ) ) -> n e. NN ) |
11 |
10
|
adantl |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. NN ) |
12 |
11
|
nncnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. CC ) |
13 |
11
|
nnne0d |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n =/= 0 ) |
14 |
4 12 13
|
divcld |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( B / n ) e. CC ) |
15 |
9 14
|
fsumcl |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( B / n ) e. CC ) |
16 |
15
|
abscld |
|- ( ph -> ( abs ` sum_ n e. ( 1 ... ( |_ ` A ) ) ( B / n ) ) e. RR ) |
17 |
4
|
abscld |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( abs ` B ) e. RR ) |
18 |
17 11
|
nndivred |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( abs ` B ) / n ) e. RR ) |
19 |
9 18
|
fsumrecl |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( abs ` B ) / n ) e. RR ) |
20 |
9 5
|
fsumrecl |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) C e. RR ) |
21 |
3
|
simpld |
|- ( ph -> R e. RR ) |
22 |
2
|
simpld |
|- ( ph -> T e. RR ) |
23 |
|
0red |
|- ( ph -> 0 e. RR ) |
24 |
|
1red |
|- ( ph -> 1 e. RR ) |
25 |
|
0lt1 |
|- 0 < 1 |
26 |
25
|
a1i |
|- ( ph -> 0 < 1 ) |
27 |
2
|
simprd |
|- ( ph -> 1 <_ T ) |
28 |
23 24 22 26 27
|
ltletrd |
|- ( ph -> 0 < T ) |
29 |
22 28
|
elrpd |
|- ( ph -> T e. RR+ ) |
30 |
29
|
relogcld |
|- ( ph -> ( log ` T ) e. RR ) |
31 |
30 24
|
readdcld |
|- ( ph -> ( ( log ` T ) + 1 ) e. RR ) |
32 |
21 31
|
remulcld |
|- ( ph -> ( R x. ( ( log ` T ) + 1 ) ) e. RR ) |
33 |
20 32
|
readdcld |
|- ( ph -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) C + ( R x. ( ( log ` T ) + 1 ) ) ) e. RR ) |
34 |
9 14
|
fsumabs |
|- ( ph -> ( abs ` sum_ n e. ( 1 ... ( |_ ` A ) ) ( B / n ) ) <_ sum_ n e. ( 1 ... ( |_ ` A ) ) ( abs ` ( B / n ) ) ) |
35 |
4 12 13
|
absdivd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( abs ` ( B / n ) ) = ( ( abs ` B ) / ( abs ` n ) ) ) |
36 |
11
|
nnrpd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. RR+ ) |
37 |
36
|
rprege0d |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( n e. RR /\ 0 <_ n ) ) |
38 |
|
absid |
|- ( ( n e. RR /\ 0 <_ n ) -> ( abs ` n ) = n ) |
39 |
37 38
|
syl |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( abs ` n ) = n ) |
40 |
39
|
oveq2d |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( abs ` B ) / ( abs ` n ) ) = ( ( abs ` B ) / n ) ) |
41 |
35 40
|
eqtrd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( abs ` ( B / n ) ) = ( ( abs ` B ) / n ) ) |
42 |
41
|
sumeq2dv |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( abs ` ( B / n ) ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( abs ` B ) / n ) ) |
43 |
34 42
|
breqtrd |
|- ( ph -> ( abs ` sum_ n e. ( 1 ... ( |_ ` A ) ) ( B / n ) ) <_ sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( abs ` B ) / n ) ) |
44 |
1 29
|
rpdivcld |
|- ( ph -> ( A / T ) e. RR+ ) |
45 |
44
|
rprege0d |
|- ( ph -> ( ( A / T ) e. RR /\ 0 <_ ( A / T ) ) ) |
46 |
|
flge0nn0 |
|- ( ( ( A / T ) e. RR /\ 0 <_ ( A / T ) ) -> ( |_ ` ( A / T ) ) e. NN0 ) |
47 |
45 46
|
syl |
|- ( ph -> ( |_ ` ( A / T ) ) e. NN0 ) |
48 |
47
|
nn0red |
|- ( ph -> ( |_ ` ( A / T ) ) e. RR ) |
49 |
48
|
ltp1d |
|- ( ph -> ( |_ ` ( A / T ) ) < ( ( |_ ` ( A / T ) ) + 1 ) ) |
50 |
|
fzdisj |
|- ( ( |_ ` ( A / T ) ) < ( ( |_ ` ( A / T ) ) + 1 ) -> ( ( 1 ... ( |_ ` ( A / T ) ) ) i^i ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) = (/) ) |
51 |
49 50
|
syl |
|- ( ph -> ( ( 1 ... ( |_ ` ( A / T ) ) ) i^i ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) = (/) ) |
52 |
|
nn0p1nn |
|- ( ( |_ ` ( A / T ) ) e. NN0 -> ( ( |_ ` ( A / T ) ) + 1 ) e. NN ) |
53 |
47 52
|
syl |
|- ( ph -> ( ( |_ ` ( A / T ) ) + 1 ) e. NN ) |
54 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
55 |
53 54
|
eleqtrdi |
|- ( ph -> ( ( |_ ` ( A / T ) ) + 1 ) e. ( ZZ>= ` 1 ) ) |
56 |
44
|
rpred |
|- ( ph -> ( A / T ) e. RR ) |
57 |
1
|
rpred |
|- ( ph -> A e. RR ) |
58 |
22 28
|
jca |
|- ( ph -> ( T e. RR /\ 0 < T ) ) |
59 |
1
|
rpregt0d |
|- ( ph -> ( A e. RR /\ 0 < A ) ) |
60 |
|
lediv2 |
|- ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( T e. RR /\ 0 < T ) /\ ( A e. RR /\ 0 < A ) ) -> ( 1 <_ T <-> ( A / T ) <_ ( A / 1 ) ) ) |
61 |
24 26 58 59 60
|
syl211anc |
|- ( ph -> ( 1 <_ T <-> ( A / T ) <_ ( A / 1 ) ) ) |
62 |
27 61
|
mpbid |
|- ( ph -> ( A / T ) <_ ( A / 1 ) ) |
63 |
57
|
recnd |
|- ( ph -> A e. CC ) |
64 |
63
|
div1d |
|- ( ph -> ( A / 1 ) = A ) |
65 |
62 64
|
breqtrd |
|- ( ph -> ( A / T ) <_ A ) |
66 |
|
flword2 |
|- ( ( ( A / T ) e. RR /\ A e. RR /\ ( A / T ) <_ A ) -> ( |_ ` A ) e. ( ZZ>= ` ( |_ ` ( A / T ) ) ) ) |
67 |
56 57 65 66
|
syl3anc |
|- ( ph -> ( |_ ` A ) e. ( ZZ>= ` ( |_ ` ( A / T ) ) ) ) |
68 |
|
fzsplit2 |
|- ( ( ( ( |_ ` ( A / T ) ) + 1 ) e. ( ZZ>= ` 1 ) /\ ( |_ ` A ) e. ( ZZ>= ` ( |_ ` ( A / T ) ) ) ) -> ( 1 ... ( |_ ` A ) ) = ( ( 1 ... ( |_ ` ( A / T ) ) ) u. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) ) |
69 |
55 67 68
|
syl2anc |
|- ( ph -> ( 1 ... ( |_ ` A ) ) = ( ( 1 ... ( |_ ` ( A / T ) ) ) u. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) ) |
70 |
18
|
recnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( abs ` B ) / n ) e. CC ) |
71 |
51 69 9 70
|
fsumsplit |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( abs ` B ) / n ) = ( sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( ( abs ` B ) / n ) + sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( ( abs ` B ) / n ) ) ) |
72 |
|
fzfid |
|- ( ph -> ( 1 ... ( |_ ` ( A / T ) ) ) e. Fin ) |
73 |
|
ssun1 |
|- ( 1 ... ( |_ ` ( A / T ) ) ) C_ ( ( 1 ... ( |_ ` ( A / T ) ) ) u. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) |
74 |
73 69
|
sseqtrrid |
|- ( ph -> ( 1 ... ( |_ ` ( A / T ) ) ) C_ ( 1 ... ( |_ ` A ) ) ) |
75 |
74
|
sselda |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> n e. ( 1 ... ( |_ ` A ) ) ) |
76 |
75 18
|
syldan |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> ( ( abs ` B ) / n ) e. RR ) |
77 |
72 76
|
fsumrecl |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( ( abs ` B ) / n ) e. RR ) |
78 |
|
fzfid |
|- ( ph -> ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) e. Fin ) |
79 |
|
ssun2 |
|- ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) C_ ( ( 1 ... ( |_ ` ( A / T ) ) ) u. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) |
80 |
79 69
|
sseqtrrid |
|- ( ph -> ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) C_ ( 1 ... ( |_ ` A ) ) ) |
81 |
80
|
sselda |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> n e. ( 1 ... ( |_ ` A ) ) ) |
82 |
81 18
|
syldan |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( ( abs ` B ) / n ) e. RR ) |
83 |
78 82
|
fsumrecl |
|- ( ph -> sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( ( abs ` B ) / n ) e. RR ) |
84 |
75 5
|
syldan |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> C e. RR ) |
85 |
72 84
|
fsumrecl |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) C e. RR ) |
86 |
|
fznnfl |
|- ( ( A / T ) e. RR -> ( n e. ( 1 ... ( |_ ` ( A / T ) ) ) <-> ( n e. NN /\ n <_ ( A / T ) ) ) ) |
87 |
56 86
|
syl |
|- ( ph -> ( n e. ( 1 ... ( |_ ` ( A / T ) ) ) <-> ( n e. NN /\ n <_ ( A / T ) ) ) ) |
88 |
87
|
simplbda |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> n <_ ( A / T ) ) |
89 |
36
|
rpred |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. RR ) |
90 |
57
|
adantr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> A e. RR ) |
91 |
58
|
adantr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( T e. RR /\ 0 < T ) ) |
92 |
|
lemuldiv2 |
|- ( ( n e. RR /\ A e. RR /\ ( T e. RR /\ 0 < T ) ) -> ( ( T x. n ) <_ A <-> n <_ ( A / T ) ) ) |
93 |
89 90 91 92
|
syl3anc |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( T x. n ) <_ A <-> n <_ ( A / T ) ) ) |
94 |
22
|
adantr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> T e. RR ) |
95 |
94 90 36
|
lemuldivd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( T x. n ) <_ A <-> T <_ ( A / n ) ) ) |
96 |
93 95
|
bitr3d |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( n <_ ( A / T ) <-> T <_ ( A / n ) ) ) |
97 |
75 96
|
syldan |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> ( n <_ ( A / T ) <-> T <_ ( A / n ) ) ) |
98 |
88 97
|
mpbid |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> T <_ ( A / n ) ) |
99 |
7
|
ex |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( T <_ ( A / n ) -> ( abs ` B ) <_ ( C x. n ) ) ) |
100 |
75 99
|
syldan |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> ( T <_ ( A / n ) -> ( abs ` B ) <_ ( C x. n ) ) ) |
101 |
98 100
|
mpd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> ( abs ` B ) <_ ( C x. n ) ) |
102 |
75 4
|
syldan |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> B e. CC ) |
103 |
102
|
abscld |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> ( abs ` B ) e. RR ) |
104 |
75 10
|
syl |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> n e. NN ) |
105 |
104
|
nnrpd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> n e. RR+ ) |
106 |
103 84 105
|
ledivmul2d |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> ( ( ( abs ` B ) / n ) <_ C <-> ( abs ` B ) <_ ( C x. n ) ) ) |
107 |
101 106
|
mpbird |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> ( ( abs ` B ) / n ) <_ C ) |
108 |
72 76 84 107
|
fsumle |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( ( abs ` B ) / n ) <_ sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) C ) |
109 |
9 5 6 74
|
fsumless |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) C <_ sum_ n e. ( 1 ... ( |_ ` A ) ) C ) |
110 |
77 85 20 108 109
|
letrd |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( ( abs ` B ) / n ) <_ sum_ n e. ( 1 ... ( |_ ` A ) ) C ) |
111 |
81 10
|
syl |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> n e. NN ) |
112 |
111
|
nnrecred |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( 1 / n ) e. RR ) |
113 |
78 112
|
fsumrecl |
|- ( ph -> sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( 1 / n ) e. RR ) |
114 |
21 113
|
remulcld |
|- ( ph -> ( R x. sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( 1 / n ) ) e. RR ) |
115 |
21
|
adantr |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> R e. RR ) |
116 |
115
|
recnd |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> R e. CC ) |
117 |
111
|
nncnd |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> n e. CC ) |
118 |
111
|
nnne0d |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> n =/= 0 ) |
119 |
116 117 118
|
divrecd |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( R / n ) = ( R x. ( 1 / n ) ) ) |
120 |
115 111
|
nndivred |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( R / n ) e. RR ) |
121 |
119 120
|
eqeltrrd |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( R x. ( 1 / n ) ) e. RR ) |
122 |
81 17
|
syldan |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( abs ` B ) e. RR ) |
123 |
81 36
|
syldan |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> n e. RR+ ) |
124 |
|
noel |
|- -. n e. (/) |
125 |
|
elin |
|- ( n e. ( ( 1 ... ( |_ ` ( A / T ) ) ) i^i ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) <-> ( n e. ( 1 ... ( |_ ` ( A / T ) ) ) /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) ) |
126 |
51
|
eleq2d |
|- ( ph -> ( n e. ( ( 1 ... ( |_ ` ( A / T ) ) ) i^i ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) <-> n e. (/) ) ) |
127 |
125 126
|
bitr3id |
|- ( ph -> ( ( n e. ( 1 ... ( |_ ` ( A / T ) ) ) /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) <-> n e. (/) ) ) |
128 |
124 127
|
mtbiri |
|- ( ph -> -. ( n e. ( 1 ... ( |_ ` ( A / T ) ) ) /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) ) |
129 |
|
imnan |
|- ( ( n e. ( 1 ... ( |_ ` ( A / T ) ) ) -> -. n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) <-> -. ( n e. ( 1 ... ( |_ ` ( A / T ) ) ) /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) ) |
130 |
128 129
|
sylibr |
|- ( ph -> ( n e. ( 1 ... ( |_ ` ( A / T ) ) ) -> -. n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) ) |
131 |
130
|
con2d |
|- ( ph -> ( n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) -> -. n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) ) |
132 |
131
|
imp |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> -. n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) |
133 |
86
|
baibd |
|- ( ( ( A / T ) e. RR /\ n e. NN ) -> ( n e. ( 1 ... ( |_ ` ( A / T ) ) ) <-> n <_ ( A / T ) ) ) |
134 |
56 10 133
|
syl2an |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( n e. ( 1 ... ( |_ ` ( A / T ) ) ) <-> n <_ ( A / T ) ) ) |
135 |
134 96
|
bitrd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( n e. ( 1 ... ( |_ ` ( A / T ) ) ) <-> T <_ ( A / n ) ) ) |
136 |
81 135
|
syldan |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( n e. ( 1 ... ( |_ ` ( A / T ) ) ) <-> T <_ ( A / n ) ) ) |
137 |
132 136
|
mtbid |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> -. T <_ ( A / n ) ) |
138 |
57
|
adantr |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> A e. RR ) |
139 |
138 111
|
nndivred |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( A / n ) e. RR ) |
140 |
22
|
adantr |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> T e. RR ) |
141 |
139 140
|
ltnled |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( ( A / n ) < T <-> -. T <_ ( A / n ) ) ) |
142 |
137 141
|
mpbird |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( A / n ) < T ) |
143 |
8
|
ex |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( A / n ) < T -> ( abs ` B ) <_ R ) ) |
144 |
81 143
|
syldan |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( ( A / n ) < T -> ( abs ` B ) <_ R ) ) |
145 |
142 144
|
mpd |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( abs ` B ) <_ R ) |
146 |
122 115 123 145
|
lediv1dd |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( ( abs ` B ) / n ) <_ ( R / n ) ) |
147 |
146 119
|
breqtrd |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( ( abs ` B ) / n ) <_ ( R x. ( 1 / n ) ) ) |
148 |
78 82 121 147
|
fsumle |
|- ( ph -> sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( ( abs ` B ) / n ) <_ sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( R x. ( 1 / n ) ) ) |
149 |
21
|
recnd |
|- ( ph -> R e. CC ) |
150 |
112
|
recnd |
|- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( 1 / n ) e. CC ) |
151 |
78 149 150
|
fsummulc2 |
|- ( ph -> ( R x. sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( 1 / n ) ) = sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( R x. ( 1 / n ) ) ) |
152 |
148 151
|
breqtrrd |
|- ( ph -> sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( ( abs ` B ) / n ) <_ ( R x. sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( 1 / n ) ) ) |
153 |
104
|
nnrecred |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> ( 1 / n ) e. RR ) |
154 |
72 153
|
fsumrecl |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) e. RR ) |
155 |
154
|
recnd |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) e. CC ) |
156 |
113
|
recnd |
|- ( ph -> sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( 1 / n ) e. CC ) |
157 |
11
|
nnrecred |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 / n ) e. RR ) |
158 |
157
|
recnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 / n ) e. CC ) |
159 |
51 69 9 158
|
fsumsplit |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) = ( sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) + sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( 1 / n ) ) ) |
160 |
155 156 159
|
mvrladdd |
|- ( ph -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) = sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( 1 / n ) ) |
161 |
9 157
|
fsumrecl |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) e. RR ) |
162 |
161
|
adantr |
|- ( ( ph /\ A < 1 ) -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) e. RR ) |
163 |
154
|
adantr |
|- ( ( ph /\ A < 1 ) -> sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) e. RR ) |
164 |
162 163
|
resubcld |
|- ( ( ph /\ A < 1 ) -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) e. RR ) |
165 |
|
0red |
|- ( ( ph /\ A < 1 ) -> 0 e. RR ) |
166 |
31
|
adantr |
|- ( ( ph /\ A < 1 ) -> ( ( log ` T ) + 1 ) e. RR ) |
167 |
|
fzfid |
|- ( ( ph /\ A < 1 ) -> ( 1 ... ( |_ ` ( A / T ) ) ) e. Fin ) |
168 |
105
|
adantlr |
|- ( ( ( ph /\ A < 1 ) /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> n e. RR+ ) |
169 |
168
|
rpreccld |
|- ( ( ( ph /\ A < 1 ) /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> ( 1 / n ) e. RR+ ) |
170 |
169
|
rpred |
|- ( ( ( ph /\ A < 1 ) /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> ( 1 / n ) e. RR ) |
171 |
169
|
rpge0d |
|- ( ( ( ph /\ A < 1 ) /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> 0 <_ ( 1 / n ) ) |
172 |
1
|
adantr |
|- ( ( ph /\ A < 1 ) -> A e. RR+ ) |
173 |
172
|
rpge0d |
|- ( ( ph /\ A < 1 ) -> 0 <_ A ) |
174 |
|
simpr |
|- ( ( ph /\ A < 1 ) -> A < 1 ) |
175 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
176 |
174 175
|
breqtrrdi |
|- ( ( ph /\ A < 1 ) -> A < ( 0 + 1 ) ) |
177 |
57
|
adantr |
|- ( ( ph /\ A < 1 ) -> A e. RR ) |
178 |
|
0z |
|- 0 e. ZZ |
179 |
|
flbi |
|- ( ( A e. RR /\ 0 e. ZZ ) -> ( ( |_ ` A ) = 0 <-> ( 0 <_ A /\ A < ( 0 + 1 ) ) ) ) |
180 |
177 178 179
|
sylancl |
|- ( ( ph /\ A < 1 ) -> ( ( |_ ` A ) = 0 <-> ( 0 <_ A /\ A < ( 0 + 1 ) ) ) ) |
181 |
173 176 180
|
mpbir2and |
|- ( ( ph /\ A < 1 ) -> ( |_ ` A ) = 0 ) |
182 |
181
|
oveq2d |
|- ( ( ph /\ A < 1 ) -> ( 1 ... ( |_ ` A ) ) = ( 1 ... 0 ) ) |
183 |
|
fz10 |
|- ( 1 ... 0 ) = (/) |
184 |
182 183
|
eqtrdi |
|- ( ( ph /\ A < 1 ) -> ( 1 ... ( |_ ` A ) ) = (/) ) |
185 |
|
0ss |
|- (/) C_ ( 1 ... ( |_ ` ( A / T ) ) ) |
186 |
184 185
|
eqsstrdi |
|- ( ( ph /\ A < 1 ) -> ( 1 ... ( |_ ` A ) ) C_ ( 1 ... ( |_ ` ( A / T ) ) ) ) |
187 |
167 170 171 186
|
fsumless |
|- ( ( ph /\ A < 1 ) -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) <_ sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) |
188 |
162 163
|
suble0d |
|- ( ( ph /\ A < 1 ) -> ( ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) <_ 0 <-> sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) <_ sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) ) |
189 |
187 188
|
mpbird |
|- ( ( ph /\ A < 1 ) -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) <_ 0 ) |
190 |
22 27
|
logge0d |
|- ( ph -> 0 <_ ( log ` T ) ) |
191 |
|
0le1 |
|- 0 <_ 1 |
192 |
191
|
a1i |
|- ( ph -> 0 <_ 1 ) |
193 |
30 24 190 192
|
addge0d |
|- ( ph -> 0 <_ ( ( log ` T ) + 1 ) ) |
194 |
193
|
adantr |
|- ( ( ph /\ A < 1 ) -> 0 <_ ( ( log ` T ) + 1 ) ) |
195 |
164 165 166 189 194
|
letrd |
|- ( ( ph /\ A < 1 ) -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) <_ ( ( log ` T ) + 1 ) ) |
196 |
|
harmonicubnd |
|- ( ( A e. RR /\ 1 <_ A ) -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) <_ ( ( log ` A ) + 1 ) ) |
197 |
57 196
|
sylan |
|- ( ( ph /\ 1 <_ A ) -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) <_ ( ( log ` A ) + 1 ) ) |
198 |
|
harmoniclbnd |
|- ( ( A / T ) e. RR+ -> ( log ` ( A / T ) ) <_ sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) |
199 |
44 198
|
syl |
|- ( ph -> ( log ` ( A / T ) ) <_ sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) |
200 |
199
|
adantr |
|- ( ( ph /\ 1 <_ A ) -> ( log ` ( A / T ) ) <_ sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) |
201 |
1
|
relogcld |
|- ( ph -> ( log ` A ) e. RR ) |
202 |
|
peano2re |
|- ( ( log ` A ) e. RR -> ( ( log ` A ) + 1 ) e. RR ) |
203 |
201 202
|
syl |
|- ( ph -> ( ( log ` A ) + 1 ) e. RR ) |
204 |
44
|
relogcld |
|- ( ph -> ( log ` ( A / T ) ) e. RR ) |
205 |
|
le2sub |
|- ( ( ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) e. RR /\ sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) e. RR ) /\ ( ( ( log ` A ) + 1 ) e. RR /\ ( log ` ( A / T ) ) e. RR ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) <_ ( ( log ` A ) + 1 ) /\ ( log ` ( A / T ) ) <_ sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) <_ ( ( ( log ` A ) + 1 ) - ( log ` ( A / T ) ) ) ) ) |
206 |
161 154 203 204 205
|
syl22anc |
|- ( ph -> ( ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) <_ ( ( log ` A ) + 1 ) /\ ( log ` ( A / T ) ) <_ sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) <_ ( ( ( log ` A ) + 1 ) - ( log ` ( A / T ) ) ) ) ) |
207 |
206
|
adantr |
|- ( ( ph /\ 1 <_ A ) -> ( ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) <_ ( ( log ` A ) + 1 ) /\ ( log ` ( A / T ) ) <_ sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) <_ ( ( ( log ` A ) + 1 ) - ( log ` ( A / T ) ) ) ) ) |
208 |
197 200 207
|
mp2and |
|- ( ( ph /\ 1 <_ A ) -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) <_ ( ( ( log ` A ) + 1 ) - ( log ` ( A / T ) ) ) ) |
209 |
201
|
recnd |
|- ( ph -> ( log ` A ) e. CC ) |
210 |
24
|
recnd |
|- ( ph -> 1 e. CC ) |
211 |
30
|
recnd |
|- ( ph -> ( log ` T ) e. CC ) |
212 |
209 210 211
|
pnncand |
|- ( ph -> ( ( ( log ` A ) + 1 ) - ( ( log ` A ) - ( log ` T ) ) ) = ( 1 + ( log ` T ) ) ) |
213 |
1 29
|
relogdivd |
|- ( ph -> ( log ` ( A / T ) ) = ( ( log ` A ) - ( log ` T ) ) ) |
214 |
213
|
oveq2d |
|- ( ph -> ( ( ( log ` A ) + 1 ) - ( log ` ( A / T ) ) ) = ( ( ( log ` A ) + 1 ) - ( ( log ` A ) - ( log ` T ) ) ) ) |
215 |
|
ax-1cn |
|- 1 e. CC |
216 |
|
addcom |
|- ( ( ( log ` T ) e. CC /\ 1 e. CC ) -> ( ( log ` T ) + 1 ) = ( 1 + ( log ` T ) ) ) |
217 |
211 215 216
|
sylancl |
|- ( ph -> ( ( log ` T ) + 1 ) = ( 1 + ( log ` T ) ) ) |
218 |
212 214 217
|
3eqtr4d |
|- ( ph -> ( ( ( log ` A ) + 1 ) - ( log ` ( A / T ) ) ) = ( ( log ` T ) + 1 ) ) |
219 |
218
|
adantr |
|- ( ( ph /\ 1 <_ A ) -> ( ( ( log ` A ) + 1 ) - ( log ` ( A / T ) ) ) = ( ( log ` T ) + 1 ) ) |
220 |
208 219
|
breqtrd |
|- ( ( ph /\ 1 <_ A ) -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) <_ ( ( log ` T ) + 1 ) ) |
221 |
195 220 57 24
|
ltlecasei |
|- ( ph -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) <_ ( ( log ` T ) + 1 ) ) |
222 |
160 221
|
eqbrtrrd |
|- ( ph -> sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( 1 / n ) <_ ( ( log ` T ) + 1 ) ) |
223 |
|
lemul2a |
|- ( ( ( sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( 1 / n ) e. RR /\ ( ( log ` T ) + 1 ) e. RR /\ ( R e. RR /\ 0 <_ R ) ) /\ sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( 1 / n ) <_ ( ( log ` T ) + 1 ) ) -> ( R x. sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( 1 / n ) ) <_ ( R x. ( ( log ` T ) + 1 ) ) ) |
224 |
113 31 3 222 223
|
syl31anc |
|- ( ph -> ( R x. sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( 1 / n ) ) <_ ( R x. ( ( log ` T ) + 1 ) ) ) |
225 |
83 114 32 152 224
|
letrd |
|- ( ph -> sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( ( abs ` B ) / n ) <_ ( R x. ( ( log ` T ) + 1 ) ) ) |
226 |
77 83 20 32 110 225
|
le2addd |
|- ( ph -> ( sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( ( abs ` B ) / n ) + sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( ( abs ` B ) / n ) ) <_ ( sum_ n e. ( 1 ... ( |_ ` A ) ) C + ( R x. ( ( log ` T ) + 1 ) ) ) ) |
227 |
71 226
|
eqbrtrd |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( abs ` B ) / n ) <_ ( sum_ n e. ( 1 ... ( |_ ` A ) ) C + ( R x. ( ( log ` T ) + 1 ) ) ) ) |
228 |
16 19 33 43 227
|
letrd |
|- ( ph -> ( abs ` sum_ n e. ( 1 ... ( |_ ` A ) ) ( B / n ) ) <_ ( sum_ n e. ( 1 ... ( |_ ` A ) ) C + ( R x. ( ( log ` T ) + 1 ) ) ) ) |