Step |
Hyp |
Ref |
Expression |
1 |
|
fsumiunle.1 |
|- ( ph -> A e. Fin ) |
2 |
|
fsumiunle.2 |
|- ( ( ph /\ x e. A ) -> B e. Fin ) |
3 |
|
fsumiunle.3 |
|- ( ( ( ph /\ x e. A ) /\ k e. B ) -> C e. RR ) |
4 |
|
fsumiunle.4 |
|- ( ( ( ph /\ x e. A ) /\ k e. B ) -> 0 <_ C ) |
5 |
1 2
|
aciunf1 |
|- ( ph -> E. f ( f : U_ x e. A B -1-1-> U_ x e. A ( { x } X. B ) /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) ) |
6 |
|
f1f1orn |
|- ( f : U_ x e. A B -1-1-> U_ x e. A ( { x } X. B ) -> f : U_ x e. A B -1-1-onto-> ran f ) |
7 |
6
|
anim1i |
|- ( ( f : U_ x e. A B -1-1-> U_ x e. A ( { x } X. B ) /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) -> ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) ) |
8 |
|
f1f |
|- ( f : U_ x e. A B -1-1-> U_ x e. A ( { x } X. B ) -> f : U_ x e. A B --> U_ x e. A ( { x } X. B ) ) |
9 |
8
|
frnd |
|- ( f : U_ x e. A B -1-1-> U_ x e. A ( { x } X. B ) -> ran f C_ U_ x e. A ( { x } X. B ) ) |
10 |
9
|
adantr |
|- ( ( f : U_ x e. A B -1-1-> U_ x e. A ( { x } X. B ) /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) -> ran f C_ U_ x e. A ( { x } X. B ) ) |
11 |
7 10
|
jca |
|- ( ( f : U_ x e. A B -1-1-> U_ x e. A ( { x } X. B ) /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) -> ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) |
12 |
11
|
eximi |
|- ( E. f ( f : U_ x e. A B -1-1-> U_ x e. A ( { x } X. B ) /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) -> E. f ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) |
13 |
5 12
|
syl |
|- ( ph -> E. f ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) |
14 |
|
csbeq1a |
|- ( k = y -> C = [_ y / k ]_ C ) |
15 |
|
nfcv |
|- F/_ y U_ x e. A B |
16 |
|
nfcv |
|- F/_ k U_ x e. A B |
17 |
|
nfcv |
|- F/_ y C |
18 |
|
nfcsb1v |
|- F/_ k [_ y / k ]_ C |
19 |
14 15 16 17 18
|
cbvsum |
|- sum_ k e. U_ x e. A B C = sum_ y e. U_ x e. A B [_ y / k ]_ C |
20 |
|
csbeq1 |
|- ( y = ( 2nd ` z ) -> [_ y / k ]_ C = [_ ( 2nd ` z ) / k ]_ C ) |
21 |
|
snfi |
|- { x } e. Fin |
22 |
|
xpfi |
|- ( ( { x } e. Fin /\ B e. Fin ) -> ( { x } X. B ) e. Fin ) |
23 |
21 2 22
|
sylancr |
|- ( ( ph /\ x e. A ) -> ( { x } X. B ) e. Fin ) |
24 |
23
|
ralrimiva |
|- ( ph -> A. x e. A ( { x } X. B ) e. Fin ) |
25 |
|
iunfi |
|- ( ( A e. Fin /\ A. x e. A ( { x } X. B ) e. Fin ) -> U_ x e. A ( { x } X. B ) e. Fin ) |
26 |
1 24 25
|
syl2anc |
|- ( ph -> U_ x e. A ( { x } X. B ) e. Fin ) |
27 |
26
|
adantr |
|- ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> U_ x e. A ( { x } X. B ) e. Fin ) |
28 |
|
simprr |
|- ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> ran f C_ U_ x e. A ( { x } X. B ) ) |
29 |
27 28
|
ssfid |
|- ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> ran f e. Fin ) |
30 |
|
simprl |
|- ( ( ph /\ ( f : U_ x e. A B -1-1-onto-> ran f /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> f : U_ x e. A B -1-1-onto-> ran f ) |
31 |
|
f1ocnv |
|- ( f : U_ x e. A B -1-1-onto-> ran f -> `' f : ran f -1-1-onto-> U_ x e. A B ) |
32 |
30 31
|
syl |
|- ( ( ph /\ ( f : U_ x e. A B -1-1-onto-> ran f /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> `' f : ran f -1-1-onto-> U_ x e. A B ) |
33 |
32
|
adantrlr |
|- ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> `' f : ran f -1-1-onto-> U_ x e. A B ) |
34 |
|
nfv |
|- F/ x ph |
35 |
|
nfcv |
|- F/_ x f |
36 |
|
nfiu1 |
|- F/_ x U_ x e. A B |
37 |
35
|
nfrn |
|- F/_ x ran f |
38 |
35 36 37
|
nff1o |
|- F/ x f : U_ x e. A B -1-1-onto-> ran f |
39 |
|
nfv |
|- F/ x ( 2nd ` ( f ` l ) ) = l |
40 |
36 39
|
nfralw |
|- F/ x A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l |
41 |
38 40
|
nfan |
|- F/ x ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) |
42 |
|
nfcv |
|- F/_ x ran f |
43 |
|
nfiu1 |
|- F/_ x U_ x e. A ( { x } X. B ) |
44 |
42 43
|
nfss |
|- F/ x ran f C_ U_ x e. A ( { x } X. B ) |
45 |
41 44
|
nfan |
|- F/ x ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) |
46 |
34 45
|
nfan |
|- F/ x ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) |
47 |
|
nfv |
|- F/ x z e. ran f |
48 |
46 47
|
nfan |
|- F/ x ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) |
49 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) /\ k e. U_ x e. A B ) /\ ( f ` k ) = z ) -> ( f ` k ) = z ) |
50 |
49
|
fveq2d |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) /\ k e. U_ x e. A B ) /\ ( f ` k ) = z ) -> ( 2nd ` ( f ` k ) ) = ( 2nd ` z ) ) |
51 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) /\ k e. U_ x e. A B ) /\ ( f ` k ) = z ) -> k e. U_ x e. A B ) |
52 |
|
simp-4r |
|- ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) |
53 |
52
|
simpld |
|- ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) ) |
54 |
53
|
simprd |
|- ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) |
55 |
54
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) /\ k e. U_ x e. A B ) /\ ( f ` k ) = z ) -> A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) |
56 |
|
2fveq3 |
|- ( l = k -> ( 2nd ` ( f ` l ) ) = ( 2nd ` ( f ` k ) ) ) |
57 |
|
id |
|- ( l = k -> l = k ) |
58 |
56 57
|
eqeq12d |
|- ( l = k -> ( ( 2nd ` ( f ` l ) ) = l <-> ( 2nd ` ( f ` k ) ) = k ) ) |
59 |
58
|
rspcva |
|- ( ( k e. U_ x e. A B /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) -> ( 2nd ` ( f ` k ) ) = k ) |
60 |
51 55 59
|
syl2anc |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) /\ k e. U_ x e. A B ) /\ ( f ` k ) = z ) -> ( 2nd ` ( f ` k ) ) = k ) |
61 |
50 60
|
eqtr3d |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) /\ k e. U_ x e. A B ) /\ ( f ` k ) = z ) -> ( 2nd ` z ) = k ) |
62 |
53
|
simpld |
|- ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> f : U_ x e. A B -1-1-onto-> ran f ) |
63 |
62
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) /\ k e. U_ x e. A B ) /\ ( f ` k ) = z ) -> f : U_ x e. A B -1-1-onto-> ran f ) |
64 |
|
f1ocnvfv1 |
|- ( ( f : U_ x e. A B -1-1-onto-> ran f /\ k e. U_ x e. A B ) -> ( `' f ` ( f ` k ) ) = k ) |
65 |
63 51 64
|
syl2anc |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) /\ k e. U_ x e. A B ) /\ ( f ` k ) = z ) -> ( `' f ` ( f ` k ) ) = k ) |
66 |
49
|
fveq2d |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) /\ k e. U_ x e. A B ) /\ ( f ` k ) = z ) -> ( `' f ` ( f ` k ) ) = ( `' f ` z ) ) |
67 |
61 65 66
|
3eqtr2rd |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) /\ k e. U_ x e. A B ) /\ ( f ` k ) = z ) -> ( `' f ` z ) = ( 2nd ` z ) ) |
68 |
|
f1ofn |
|- ( f : U_ x e. A B -1-1-onto-> ran f -> f Fn U_ x e. A B ) |
69 |
62 68
|
syl |
|- ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> f Fn U_ x e. A B ) |
70 |
|
simpllr |
|- ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> z e. ran f ) |
71 |
|
fvelrnb |
|- ( f Fn U_ x e. A B -> ( z e. ran f <-> E. k e. U_ x e. A B ( f ` k ) = z ) ) |
72 |
71
|
biimpa |
|- ( ( f Fn U_ x e. A B /\ z e. ran f ) -> E. k e. U_ x e. A B ( f ` k ) = z ) |
73 |
69 70 72
|
syl2anc |
|- ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> E. k e. U_ x e. A B ( f ` k ) = z ) |
74 |
67 73
|
r19.29a |
|- ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> ( `' f ` z ) = ( 2nd ` z ) ) |
75 |
28
|
sselda |
|- ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) -> z e. U_ x e. A ( { x } X. B ) ) |
76 |
|
eliun |
|- ( z e. U_ x e. A ( { x } X. B ) <-> E. x e. A z e. ( { x } X. B ) ) |
77 |
75 76
|
sylib |
|- ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) -> E. x e. A z e. ( { x } X. B ) ) |
78 |
48 74 77
|
r19.29af |
|- ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) -> ( `' f ` z ) = ( 2nd ` z ) ) |
79 |
|
nfv |
|- F/ k ( ph /\ y e. U_ x e. A B ) |
80 |
|
nfcv |
|- F/_ k CC |
81 |
18 80
|
nfel |
|- F/ k [_ y / k ]_ C e. CC |
82 |
79 81
|
nfim |
|- F/ k ( ( ph /\ y e. U_ x e. A B ) -> [_ y / k ]_ C e. CC ) |
83 |
|
eleq1w |
|- ( k = y -> ( k e. U_ x e. A B <-> y e. U_ x e. A B ) ) |
84 |
83
|
anbi2d |
|- ( k = y -> ( ( ph /\ k e. U_ x e. A B ) <-> ( ph /\ y e. U_ x e. A B ) ) ) |
85 |
14
|
eleq1d |
|- ( k = y -> ( C e. CC <-> [_ y / k ]_ C e. CC ) ) |
86 |
84 85
|
imbi12d |
|- ( k = y -> ( ( ( ph /\ k e. U_ x e. A B ) -> C e. CC ) <-> ( ( ph /\ y e. U_ x e. A B ) -> [_ y / k ]_ C e. CC ) ) ) |
87 |
|
nfcv |
|- F/_ x k |
88 |
87 36
|
nfel |
|- F/ x k e. U_ x e. A B |
89 |
34 88
|
nfan |
|- F/ x ( ph /\ k e. U_ x e. A B ) |
90 |
3
|
adantllr |
|- ( ( ( ( ph /\ k e. U_ x e. A B ) /\ x e. A ) /\ k e. B ) -> C e. RR ) |
91 |
90
|
recnd |
|- ( ( ( ( ph /\ k e. U_ x e. A B ) /\ x e. A ) /\ k e. B ) -> C e. CC ) |
92 |
|
eliun |
|- ( k e. U_ x e. A B <-> E. x e. A k e. B ) |
93 |
92
|
biimpi |
|- ( k e. U_ x e. A B -> E. x e. A k e. B ) |
94 |
93
|
adantl |
|- ( ( ph /\ k e. U_ x e. A B ) -> E. x e. A k e. B ) |
95 |
89 91 94
|
r19.29af |
|- ( ( ph /\ k e. U_ x e. A B ) -> C e. CC ) |
96 |
82 86 95
|
chvarfv |
|- ( ( ph /\ y e. U_ x e. A B ) -> [_ y / k ]_ C e. CC ) |
97 |
96
|
adantlr |
|- ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ y e. U_ x e. A B ) -> [_ y / k ]_ C e. CC ) |
98 |
20 29 33 78 97
|
fsumf1o |
|- ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> sum_ y e. U_ x e. A B [_ y / k ]_ C = sum_ z e. ran f [_ ( 2nd ` z ) / k ]_ C ) |
99 |
19 98
|
eqtrid |
|- ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> sum_ k e. U_ x e. A B C = sum_ z e. ran f [_ ( 2nd ` z ) / k ]_ C ) |
100 |
99
|
eqcomd |
|- ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> sum_ z e. ran f [_ ( 2nd ` z ) / k ]_ C = sum_ k e. U_ x e. A B C ) |
101 |
|
nfcv |
|- F/_ x z |
102 |
101 43
|
nfel |
|- F/ x z e. U_ x e. A ( { x } X. B ) |
103 |
34 102
|
nfan |
|- F/ x ( ph /\ z e. U_ x e. A ( { x } X. B ) ) |
104 |
|
xp2nd |
|- ( z e. ( { x } X. B ) -> ( 2nd ` z ) e. B ) |
105 |
104
|
adantl |
|- ( ( ( ( ph /\ z e. U_ x e. A ( { x } X. B ) ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> ( 2nd ` z ) e. B ) |
106 |
3
|
ralrimiva |
|- ( ( ph /\ x e. A ) -> A. k e. B C e. RR ) |
107 |
106
|
adantlr |
|- ( ( ( ph /\ z e. U_ x e. A ( { x } X. B ) ) /\ x e. A ) -> A. k e. B C e. RR ) |
108 |
107
|
adantr |
|- ( ( ( ( ph /\ z e. U_ x e. A ( { x } X. B ) ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> A. k e. B C e. RR ) |
109 |
|
nfcsb1v |
|- F/_ k [_ ( 2nd ` z ) / k ]_ C |
110 |
109
|
nfel1 |
|- F/ k [_ ( 2nd ` z ) / k ]_ C e. RR |
111 |
|
csbeq1a |
|- ( k = ( 2nd ` z ) -> C = [_ ( 2nd ` z ) / k ]_ C ) |
112 |
111
|
eleq1d |
|- ( k = ( 2nd ` z ) -> ( C e. RR <-> [_ ( 2nd ` z ) / k ]_ C e. RR ) ) |
113 |
110 112
|
rspc |
|- ( ( 2nd ` z ) e. B -> ( A. k e. B C e. RR -> [_ ( 2nd ` z ) / k ]_ C e. RR ) ) |
114 |
113
|
imp |
|- ( ( ( 2nd ` z ) e. B /\ A. k e. B C e. RR ) -> [_ ( 2nd ` z ) / k ]_ C e. RR ) |
115 |
105 108 114
|
syl2anc |
|- ( ( ( ( ph /\ z e. U_ x e. A ( { x } X. B ) ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> [_ ( 2nd ` z ) / k ]_ C e. RR ) |
116 |
76
|
biimpi |
|- ( z e. U_ x e. A ( { x } X. B ) -> E. x e. A z e. ( { x } X. B ) ) |
117 |
116
|
adantl |
|- ( ( ph /\ z e. U_ x e. A ( { x } X. B ) ) -> E. x e. A z e. ( { x } X. B ) ) |
118 |
103 115 117
|
r19.29af |
|- ( ( ph /\ z e. U_ x e. A ( { x } X. B ) ) -> [_ ( 2nd ` z ) / k ]_ C e. RR ) |
119 |
118
|
adantlr |
|- ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. U_ x e. A ( { x } X. B ) ) -> [_ ( 2nd ` z ) / k ]_ C e. RR ) |
120 |
|
xp1st |
|- ( z e. ( { x } X. B ) -> ( 1st ` z ) e. { x } ) |
121 |
|
elsni |
|- ( ( 1st ` z ) e. { x } -> ( 1st ` z ) = x ) |
122 |
120 121
|
syl |
|- ( z e. ( { x } X. B ) -> ( 1st ` z ) = x ) |
123 |
122 104
|
jca |
|- ( z e. ( { x } X. B ) -> ( ( 1st ` z ) = x /\ ( 2nd ` z ) e. B ) ) |
124 |
|
simplll |
|- ( ( ( ( ph /\ z e. U_ x e. A ( { x } X. B ) ) /\ x e. A ) /\ ( ( 1st ` z ) = x /\ ( 2nd ` z ) e. B ) ) -> ph ) |
125 |
|
simplr |
|- ( ( ( ( ph /\ z e. U_ x e. A ( { x } X. B ) ) /\ x e. A ) /\ ( ( 1st ` z ) = x /\ ( 2nd ` z ) e. B ) ) -> x e. A ) |
126 |
4
|
ralrimiva |
|- ( ( ph /\ x e. A ) -> A. k e. B 0 <_ C ) |
127 |
124 125 126
|
syl2anc |
|- ( ( ( ( ph /\ z e. U_ x e. A ( { x } X. B ) ) /\ x e. A ) /\ ( ( 1st ` z ) = x /\ ( 2nd ` z ) e. B ) ) -> A. k e. B 0 <_ C ) |
128 |
123 127
|
sylan2 |
|- ( ( ( ( ph /\ z e. U_ x e. A ( { x } X. B ) ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> A. k e. B 0 <_ C ) |
129 |
|
nfcv |
|- F/_ k 0 |
130 |
|
nfcv |
|- F/_ k <_ |
131 |
129 130 109
|
nfbr |
|- F/ k 0 <_ [_ ( 2nd ` z ) / k ]_ C |
132 |
111
|
breq2d |
|- ( k = ( 2nd ` z ) -> ( 0 <_ C <-> 0 <_ [_ ( 2nd ` z ) / k ]_ C ) ) |
133 |
131 132
|
rspc |
|- ( ( 2nd ` z ) e. B -> ( A. k e. B 0 <_ C -> 0 <_ [_ ( 2nd ` z ) / k ]_ C ) ) |
134 |
133
|
imp |
|- ( ( ( 2nd ` z ) e. B /\ A. k e. B 0 <_ C ) -> 0 <_ [_ ( 2nd ` z ) / k ]_ C ) |
135 |
105 128 134
|
syl2anc |
|- ( ( ( ( ph /\ z e. U_ x e. A ( { x } X. B ) ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> 0 <_ [_ ( 2nd ` z ) / k ]_ C ) |
136 |
103 135 117
|
r19.29af |
|- ( ( ph /\ z e. U_ x e. A ( { x } X. B ) ) -> 0 <_ [_ ( 2nd ` z ) / k ]_ C ) |
137 |
136
|
adantlr |
|- ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. U_ x e. A ( { x } X. B ) ) -> 0 <_ [_ ( 2nd ` z ) / k ]_ C ) |
138 |
27 119 137 28
|
fsumless |
|- ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> sum_ z e. ran f [_ ( 2nd ` z ) / k ]_ C <_ sum_ z e. U_ x e. A ( { x } X. B ) [_ ( 2nd ` z ) / k ]_ C ) |
139 |
100 138
|
eqbrtrrd |
|- ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> sum_ k e. U_ x e. A B C <_ sum_ z e. U_ x e. A ( { x } X. B ) [_ ( 2nd ` z ) / k ]_ C ) |
140 |
|
nfcv |
|- F/_ y B |
141 |
|
nfcv |
|- F/_ k B |
142 |
14 140 141 17 18
|
cbvsum |
|- sum_ k e. B C = sum_ y e. B [_ y / k ]_ C |
143 |
142
|
a1i |
|- ( ph -> sum_ k e. B C = sum_ y e. B [_ y / k ]_ C ) |
144 |
143
|
sumeq2sdv |
|- ( ph -> sum_ x e. A sum_ k e. B C = sum_ x e. A sum_ y e. B [_ y / k ]_ C ) |
145 |
|
vex |
|- x e. _V |
146 |
|
vex |
|- y e. _V |
147 |
145 146
|
op2ndd |
|- ( z = <. x , y >. -> ( 2nd ` z ) = y ) |
148 |
147
|
eqcomd |
|- ( z = <. x , y >. -> y = ( 2nd ` z ) ) |
149 |
148
|
csbeq1d |
|- ( z = <. x , y >. -> [_ y / k ]_ C = [_ ( 2nd ` z ) / k ]_ C ) |
150 |
149
|
eqcomd |
|- ( z = <. x , y >. -> [_ ( 2nd ` z ) / k ]_ C = [_ y / k ]_ C ) |
151 |
|
nfv |
|- F/ k ( ( ph /\ x e. A ) /\ y e. B ) |
152 |
18
|
nfel1 |
|- F/ k [_ y / k ]_ C e. CC |
153 |
151 152
|
nfim |
|- F/ k ( ( ( ph /\ x e. A ) /\ y e. B ) -> [_ y / k ]_ C e. CC ) |
154 |
|
eleq1w |
|- ( k = y -> ( k e. B <-> y e. B ) ) |
155 |
154
|
anbi2d |
|- ( k = y -> ( ( ( ph /\ x e. A ) /\ k e. B ) <-> ( ( ph /\ x e. A ) /\ y e. B ) ) ) |
156 |
155 85
|
imbi12d |
|- ( k = y -> ( ( ( ( ph /\ x e. A ) /\ k e. B ) -> C e. CC ) <-> ( ( ( ph /\ x e. A ) /\ y e. B ) -> [_ y / k ]_ C e. CC ) ) ) |
157 |
3
|
recnd |
|- ( ( ( ph /\ x e. A ) /\ k e. B ) -> C e. CC ) |
158 |
153 156 157
|
chvarfv |
|- ( ( ( ph /\ x e. A ) /\ y e. B ) -> [_ y / k ]_ C e. CC ) |
159 |
158
|
anasss |
|- ( ( ph /\ ( x e. A /\ y e. B ) ) -> [_ y / k ]_ C e. CC ) |
160 |
150 1 2 159
|
fsum2d |
|- ( ph -> sum_ x e. A sum_ y e. B [_ y / k ]_ C = sum_ z e. U_ x e. A ( { x } X. B ) [_ ( 2nd ` z ) / k ]_ C ) |
161 |
144 160
|
eqtrd |
|- ( ph -> sum_ x e. A sum_ k e. B C = sum_ z e. U_ x e. A ( { x } X. B ) [_ ( 2nd ` z ) / k ]_ C ) |
162 |
161
|
adantr |
|- ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> sum_ x e. A sum_ k e. B C = sum_ z e. U_ x e. A ( { x } X. B ) [_ ( 2nd ` z ) / k ]_ C ) |
163 |
139 162
|
breqtrrd |
|- ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> sum_ k e. U_ x e. A B C <_ sum_ x e. A sum_ k e. B C ) |
164 |
13 163
|
exlimddv |
|- ( ph -> sum_ k e. U_ x e. A B C <_ sum_ x e. A sum_ k e. B C ) |