| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumiunle.1 |
|- ( ph -> A e. Fin ) |
| 2 |
|
fsumiunle.2 |
|- ( ( ph /\ x e. A ) -> B e. Fin ) |
| 3 |
|
fsumiunle.3 |
|- ( ( ( ph /\ x e. A ) /\ k e. B ) -> C e. RR ) |
| 4 |
|
fsumiunle.4 |
|- ( ( ( ph /\ x e. A ) /\ k e. B ) -> 0 <_ C ) |
| 5 |
1 2
|
aciunf1 |
|- ( ph -> E. f ( f : U_ x e. A B -1-1-> U_ x e. A ( { x } X. B ) /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) ) |
| 6 |
|
f1f1orn |
|- ( f : U_ x e. A B -1-1-> U_ x e. A ( { x } X. B ) -> f : U_ x e. A B -1-1-onto-> ran f ) |
| 7 |
6
|
anim1i |
|- ( ( f : U_ x e. A B -1-1-> U_ x e. A ( { x } X. B ) /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) -> ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) ) |
| 8 |
|
f1f |
|- ( f : U_ x e. A B -1-1-> U_ x e. A ( { x } X. B ) -> f : U_ x e. A B --> U_ x e. A ( { x } X. B ) ) |
| 9 |
8
|
frnd |
|- ( f : U_ x e. A B -1-1-> U_ x e. A ( { x } X. B ) -> ran f C_ U_ x e. A ( { x } X. B ) ) |
| 10 |
9
|
adantr |
|- ( ( f : U_ x e. A B -1-1-> U_ x e. A ( { x } X. B ) /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) -> ran f C_ U_ x e. A ( { x } X. B ) ) |
| 11 |
7 10
|
jca |
|- ( ( f : U_ x e. A B -1-1-> U_ x e. A ( { x } X. B ) /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) -> ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) |
| 12 |
11
|
eximi |
|- ( E. f ( f : U_ x e. A B -1-1-> U_ x e. A ( { x } X. B ) /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) -> E. f ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) |
| 13 |
5 12
|
syl |
|- ( ph -> E. f ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) |
| 14 |
|
csbeq1a |
|- ( k = y -> C = [_ y / k ]_ C ) |
| 15 |
|
nfcv |
|- F/_ y C |
| 16 |
|
nfcsb1v |
|- F/_ k [_ y / k ]_ C |
| 17 |
14 15 16
|
cbvsum |
|- sum_ k e. U_ x e. A B C = sum_ y e. U_ x e. A B [_ y / k ]_ C |
| 18 |
|
csbeq1 |
|- ( y = ( 2nd ` z ) -> [_ y / k ]_ C = [_ ( 2nd ` z ) / k ]_ C ) |
| 19 |
|
snfi |
|- { x } e. Fin |
| 20 |
|
xpfi |
|- ( ( { x } e. Fin /\ B e. Fin ) -> ( { x } X. B ) e. Fin ) |
| 21 |
19 2 20
|
sylancr |
|- ( ( ph /\ x e. A ) -> ( { x } X. B ) e. Fin ) |
| 22 |
21
|
ralrimiva |
|- ( ph -> A. x e. A ( { x } X. B ) e. Fin ) |
| 23 |
|
iunfi |
|- ( ( A e. Fin /\ A. x e. A ( { x } X. B ) e. Fin ) -> U_ x e. A ( { x } X. B ) e. Fin ) |
| 24 |
1 22 23
|
syl2anc |
|- ( ph -> U_ x e. A ( { x } X. B ) e. Fin ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> U_ x e. A ( { x } X. B ) e. Fin ) |
| 26 |
|
simprr |
|- ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> ran f C_ U_ x e. A ( { x } X. B ) ) |
| 27 |
25 26
|
ssfid |
|- ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> ran f e. Fin ) |
| 28 |
|
simprl |
|- ( ( ph /\ ( f : U_ x e. A B -1-1-onto-> ran f /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> f : U_ x e. A B -1-1-onto-> ran f ) |
| 29 |
|
f1ocnv |
|- ( f : U_ x e. A B -1-1-onto-> ran f -> `' f : ran f -1-1-onto-> U_ x e. A B ) |
| 30 |
28 29
|
syl |
|- ( ( ph /\ ( f : U_ x e. A B -1-1-onto-> ran f /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> `' f : ran f -1-1-onto-> U_ x e. A B ) |
| 31 |
30
|
adantrlr |
|- ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> `' f : ran f -1-1-onto-> U_ x e. A B ) |
| 32 |
|
nfv |
|- F/ x ph |
| 33 |
|
nfcv |
|- F/_ x f |
| 34 |
|
nfiu1 |
|- F/_ x U_ x e. A B |
| 35 |
33
|
nfrn |
|- F/_ x ran f |
| 36 |
33 34 35
|
nff1o |
|- F/ x f : U_ x e. A B -1-1-onto-> ran f |
| 37 |
|
nfv |
|- F/ x ( 2nd ` ( f ` l ) ) = l |
| 38 |
34 37
|
nfralw |
|- F/ x A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l |
| 39 |
36 38
|
nfan |
|- F/ x ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) |
| 40 |
|
nfcv |
|- F/_ x ran f |
| 41 |
|
nfiu1 |
|- F/_ x U_ x e. A ( { x } X. B ) |
| 42 |
40 41
|
nfss |
|- F/ x ran f C_ U_ x e. A ( { x } X. B ) |
| 43 |
39 42
|
nfan |
|- F/ x ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) |
| 44 |
32 43
|
nfan |
|- F/ x ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) |
| 45 |
|
nfv |
|- F/ x z e. ran f |
| 46 |
44 45
|
nfan |
|- F/ x ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) |
| 47 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) /\ k e. U_ x e. A B ) /\ ( f ` k ) = z ) -> ( f ` k ) = z ) |
| 48 |
47
|
fveq2d |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) /\ k e. U_ x e. A B ) /\ ( f ` k ) = z ) -> ( 2nd ` ( f ` k ) ) = ( 2nd ` z ) ) |
| 49 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) /\ k e. U_ x e. A B ) /\ ( f ` k ) = z ) -> k e. U_ x e. A B ) |
| 50 |
|
simp-4r |
|- ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) |
| 51 |
50
|
simpld |
|- ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) ) |
| 52 |
51
|
simprd |
|- ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) |
| 53 |
52
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) /\ k e. U_ x e. A B ) /\ ( f ` k ) = z ) -> A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) |
| 54 |
|
2fveq3 |
|- ( l = k -> ( 2nd ` ( f ` l ) ) = ( 2nd ` ( f ` k ) ) ) |
| 55 |
|
id |
|- ( l = k -> l = k ) |
| 56 |
54 55
|
eqeq12d |
|- ( l = k -> ( ( 2nd ` ( f ` l ) ) = l <-> ( 2nd ` ( f ` k ) ) = k ) ) |
| 57 |
56
|
rspcva |
|- ( ( k e. U_ x e. A B /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) -> ( 2nd ` ( f ` k ) ) = k ) |
| 58 |
49 53 57
|
syl2anc |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) /\ k e. U_ x e. A B ) /\ ( f ` k ) = z ) -> ( 2nd ` ( f ` k ) ) = k ) |
| 59 |
48 58
|
eqtr3d |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) /\ k e. U_ x e. A B ) /\ ( f ` k ) = z ) -> ( 2nd ` z ) = k ) |
| 60 |
51
|
simpld |
|- ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> f : U_ x e. A B -1-1-onto-> ran f ) |
| 61 |
60
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) /\ k e. U_ x e. A B ) /\ ( f ` k ) = z ) -> f : U_ x e. A B -1-1-onto-> ran f ) |
| 62 |
|
f1ocnvfv1 |
|- ( ( f : U_ x e. A B -1-1-onto-> ran f /\ k e. U_ x e. A B ) -> ( `' f ` ( f ` k ) ) = k ) |
| 63 |
61 49 62
|
syl2anc |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) /\ k e. U_ x e. A B ) /\ ( f ` k ) = z ) -> ( `' f ` ( f ` k ) ) = k ) |
| 64 |
47
|
fveq2d |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) /\ k e. U_ x e. A B ) /\ ( f ` k ) = z ) -> ( `' f ` ( f ` k ) ) = ( `' f ` z ) ) |
| 65 |
59 63 64
|
3eqtr2rd |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) /\ k e. U_ x e. A B ) /\ ( f ` k ) = z ) -> ( `' f ` z ) = ( 2nd ` z ) ) |
| 66 |
|
f1ofn |
|- ( f : U_ x e. A B -1-1-onto-> ran f -> f Fn U_ x e. A B ) |
| 67 |
60 66
|
syl |
|- ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> f Fn U_ x e. A B ) |
| 68 |
|
simpllr |
|- ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> z e. ran f ) |
| 69 |
|
fvelrnb |
|- ( f Fn U_ x e. A B -> ( z e. ran f <-> E. k e. U_ x e. A B ( f ` k ) = z ) ) |
| 70 |
69
|
biimpa |
|- ( ( f Fn U_ x e. A B /\ z e. ran f ) -> E. k e. U_ x e. A B ( f ` k ) = z ) |
| 71 |
67 68 70
|
syl2anc |
|- ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> E. k e. U_ x e. A B ( f ` k ) = z ) |
| 72 |
65 71
|
r19.29a |
|- ( ( ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> ( `' f ` z ) = ( 2nd ` z ) ) |
| 73 |
26
|
sselda |
|- ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) -> z e. U_ x e. A ( { x } X. B ) ) |
| 74 |
|
eliun |
|- ( z e. U_ x e. A ( { x } X. B ) <-> E. x e. A z e. ( { x } X. B ) ) |
| 75 |
73 74
|
sylib |
|- ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) -> E. x e. A z e. ( { x } X. B ) ) |
| 76 |
46 72 75
|
r19.29af |
|- ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. ran f ) -> ( `' f ` z ) = ( 2nd ` z ) ) |
| 77 |
|
nfv |
|- F/ k ( ph /\ y e. U_ x e. A B ) |
| 78 |
|
nfcv |
|- F/_ k CC |
| 79 |
16 78
|
nfel |
|- F/ k [_ y / k ]_ C e. CC |
| 80 |
77 79
|
nfim |
|- F/ k ( ( ph /\ y e. U_ x e. A B ) -> [_ y / k ]_ C e. CC ) |
| 81 |
|
eleq1w |
|- ( k = y -> ( k e. U_ x e. A B <-> y e. U_ x e. A B ) ) |
| 82 |
81
|
anbi2d |
|- ( k = y -> ( ( ph /\ k e. U_ x e. A B ) <-> ( ph /\ y e. U_ x e. A B ) ) ) |
| 83 |
14
|
eleq1d |
|- ( k = y -> ( C e. CC <-> [_ y / k ]_ C e. CC ) ) |
| 84 |
82 83
|
imbi12d |
|- ( k = y -> ( ( ( ph /\ k e. U_ x e. A B ) -> C e. CC ) <-> ( ( ph /\ y e. U_ x e. A B ) -> [_ y / k ]_ C e. CC ) ) ) |
| 85 |
|
nfcv |
|- F/_ x k |
| 86 |
85 34
|
nfel |
|- F/ x k e. U_ x e. A B |
| 87 |
32 86
|
nfan |
|- F/ x ( ph /\ k e. U_ x e. A B ) |
| 88 |
3
|
adantllr |
|- ( ( ( ( ph /\ k e. U_ x e. A B ) /\ x e. A ) /\ k e. B ) -> C e. RR ) |
| 89 |
88
|
recnd |
|- ( ( ( ( ph /\ k e. U_ x e. A B ) /\ x e. A ) /\ k e. B ) -> C e. CC ) |
| 90 |
|
eliun |
|- ( k e. U_ x e. A B <-> E. x e. A k e. B ) |
| 91 |
90
|
biimpi |
|- ( k e. U_ x e. A B -> E. x e. A k e. B ) |
| 92 |
91
|
adantl |
|- ( ( ph /\ k e. U_ x e. A B ) -> E. x e. A k e. B ) |
| 93 |
87 89 92
|
r19.29af |
|- ( ( ph /\ k e. U_ x e. A B ) -> C e. CC ) |
| 94 |
80 84 93
|
chvarfv |
|- ( ( ph /\ y e. U_ x e. A B ) -> [_ y / k ]_ C e. CC ) |
| 95 |
94
|
adantlr |
|- ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ y e. U_ x e. A B ) -> [_ y / k ]_ C e. CC ) |
| 96 |
18 27 31 76 95
|
fsumf1o |
|- ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> sum_ y e. U_ x e. A B [_ y / k ]_ C = sum_ z e. ran f [_ ( 2nd ` z ) / k ]_ C ) |
| 97 |
17 96
|
eqtrid |
|- ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> sum_ k e. U_ x e. A B C = sum_ z e. ran f [_ ( 2nd ` z ) / k ]_ C ) |
| 98 |
97
|
eqcomd |
|- ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> sum_ z e. ran f [_ ( 2nd ` z ) / k ]_ C = sum_ k e. U_ x e. A B C ) |
| 99 |
|
nfcv |
|- F/_ x z |
| 100 |
99 41
|
nfel |
|- F/ x z e. U_ x e. A ( { x } X. B ) |
| 101 |
32 100
|
nfan |
|- F/ x ( ph /\ z e. U_ x e. A ( { x } X. B ) ) |
| 102 |
|
xp2nd |
|- ( z e. ( { x } X. B ) -> ( 2nd ` z ) e. B ) |
| 103 |
102
|
adantl |
|- ( ( ( ( ph /\ z e. U_ x e. A ( { x } X. B ) ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> ( 2nd ` z ) e. B ) |
| 104 |
3
|
ralrimiva |
|- ( ( ph /\ x e. A ) -> A. k e. B C e. RR ) |
| 105 |
104
|
adantlr |
|- ( ( ( ph /\ z e. U_ x e. A ( { x } X. B ) ) /\ x e. A ) -> A. k e. B C e. RR ) |
| 106 |
105
|
adantr |
|- ( ( ( ( ph /\ z e. U_ x e. A ( { x } X. B ) ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> A. k e. B C e. RR ) |
| 107 |
|
nfcsb1v |
|- F/_ k [_ ( 2nd ` z ) / k ]_ C |
| 108 |
107
|
nfel1 |
|- F/ k [_ ( 2nd ` z ) / k ]_ C e. RR |
| 109 |
|
csbeq1a |
|- ( k = ( 2nd ` z ) -> C = [_ ( 2nd ` z ) / k ]_ C ) |
| 110 |
109
|
eleq1d |
|- ( k = ( 2nd ` z ) -> ( C e. RR <-> [_ ( 2nd ` z ) / k ]_ C e. RR ) ) |
| 111 |
108 110
|
rspc |
|- ( ( 2nd ` z ) e. B -> ( A. k e. B C e. RR -> [_ ( 2nd ` z ) / k ]_ C e. RR ) ) |
| 112 |
111
|
imp |
|- ( ( ( 2nd ` z ) e. B /\ A. k e. B C e. RR ) -> [_ ( 2nd ` z ) / k ]_ C e. RR ) |
| 113 |
103 106 112
|
syl2anc |
|- ( ( ( ( ph /\ z e. U_ x e. A ( { x } X. B ) ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> [_ ( 2nd ` z ) / k ]_ C e. RR ) |
| 114 |
74
|
biimpi |
|- ( z e. U_ x e. A ( { x } X. B ) -> E. x e. A z e. ( { x } X. B ) ) |
| 115 |
114
|
adantl |
|- ( ( ph /\ z e. U_ x e. A ( { x } X. B ) ) -> E. x e. A z e. ( { x } X. B ) ) |
| 116 |
101 113 115
|
r19.29af |
|- ( ( ph /\ z e. U_ x e. A ( { x } X. B ) ) -> [_ ( 2nd ` z ) / k ]_ C e. RR ) |
| 117 |
116
|
adantlr |
|- ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. U_ x e. A ( { x } X. B ) ) -> [_ ( 2nd ` z ) / k ]_ C e. RR ) |
| 118 |
|
xp1st |
|- ( z e. ( { x } X. B ) -> ( 1st ` z ) e. { x } ) |
| 119 |
|
elsni |
|- ( ( 1st ` z ) e. { x } -> ( 1st ` z ) = x ) |
| 120 |
118 119
|
syl |
|- ( z e. ( { x } X. B ) -> ( 1st ` z ) = x ) |
| 121 |
120 102
|
jca |
|- ( z e. ( { x } X. B ) -> ( ( 1st ` z ) = x /\ ( 2nd ` z ) e. B ) ) |
| 122 |
|
simplll |
|- ( ( ( ( ph /\ z e. U_ x e. A ( { x } X. B ) ) /\ x e. A ) /\ ( ( 1st ` z ) = x /\ ( 2nd ` z ) e. B ) ) -> ph ) |
| 123 |
|
simplr |
|- ( ( ( ( ph /\ z e. U_ x e. A ( { x } X. B ) ) /\ x e. A ) /\ ( ( 1st ` z ) = x /\ ( 2nd ` z ) e. B ) ) -> x e. A ) |
| 124 |
4
|
ralrimiva |
|- ( ( ph /\ x e. A ) -> A. k e. B 0 <_ C ) |
| 125 |
122 123 124
|
syl2anc |
|- ( ( ( ( ph /\ z e. U_ x e. A ( { x } X. B ) ) /\ x e. A ) /\ ( ( 1st ` z ) = x /\ ( 2nd ` z ) e. B ) ) -> A. k e. B 0 <_ C ) |
| 126 |
121 125
|
sylan2 |
|- ( ( ( ( ph /\ z e. U_ x e. A ( { x } X. B ) ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> A. k e. B 0 <_ C ) |
| 127 |
|
nfcv |
|- F/_ k 0 |
| 128 |
|
nfcv |
|- F/_ k <_ |
| 129 |
127 128 107
|
nfbr |
|- F/ k 0 <_ [_ ( 2nd ` z ) / k ]_ C |
| 130 |
109
|
breq2d |
|- ( k = ( 2nd ` z ) -> ( 0 <_ C <-> 0 <_ [_ ( 2nd ` z ) / k ]_ C ) ) |
| 131 |
129 130
|
rspc |
|- ( ( 2nd ` z ) e. B -> ( A. k e. B 0 <_ C -> 0 <_ [_ ( 2nd ` z ) / k ]_ C ) ) |
| 132 |
131
|
imp |
|- ( ( ( 2nd ` z ) e. B /\ A. k e. B 0 <_ C ) -> 0 <_ [_ ( 2nd ` z ) / k ]_ C ) |
| 133 |
103 126 132
|
syl2anc |
|- ( ( ( ( ph /\ z e. U_ x e. A ( { x } X. B ) ) /\ x e. A ) /\ z e. ( { x } X. B ) ) -> 0 <_ [_ ( 2nd ` z ) / k ]_ C ) |
| 134 |
101 133 115
|
r19.29af |
|- ( ( ph /\ z e. U_ x e. A ( { x } X. B ) ) -> 0 <_ [_ ( 2nd ` z ) / k ]_ C ) |
| 135 |
134
|
adantlr |
|- ( ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) /\ z e. U_ x e. A ( { x } X. B ) ) -> 0 <_ [_ ( 2nd ` z ) / k ]_ C ) |
| 136 |
25 117 135 26
|
fsumless |
|- ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> sum_ z e. ran f [_ ( 2nd ` z ) / k ]_ C <_ sum_ z e. U_ x e. A ( { x } X. B ) [_ ( 2nd ` z ) / k ]_ C ) |
| 137 |
98 136
|
eqbrtrrd |
|- ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> sum_ k e. U_ x e. A B C <_ sum_ z e. U_ x e. A ( { x } X. B ) [_ ( 2nd ` z ) / k ]_ C ) |
| 138 |
14 15 16
|
cbvsum |
|- sum_ k e. B C = sum_ y e. B [_ y / k ]_ C |
| 139 |
138
|
a1i |
|- ( ph -> sum_ k e. B C = sum_ y e. B [_ y / k ]_ C ) |
| 140 |
139
|
sumeq2sdv |
|- ( ph -> sum_ x e. A sum_ k e. B C = sum_ x e. A sum_ y e. B [_ y / k ]_ C ) |
| 141 |
|
vex |
|- x e. _V |
| 142 |
|
vex |
|- y e. _V |
| 143 |
141 142
|
op2ndd |
|- ( z = <. x , y >. -> ( 2nd ` z ) = y ) |
| 144 |
143
|
eqcomd |
|- ( z = <. x , y >. -> y = ( 2nd ` z ) ) |
| 145 |
144
|
csbeq1d |
|- ( z = <. x , y >. -> [_ y / k ]_ C = [_ ( 2nd ` z ) / k ]_ C ) |
| 146 |
145
|
eqcomd |
|- ( z = <. x , y >. -> [_ ( 2nd ` z ) / k ]_ C = [_ y / k ]_ C ) |
| 147 |
|
nfv |
|- F/ k ( ( ph /\ x e. A ) /\ y e. B ) |
| 148 |
16
|
nfel1 |
|- F/ k [_ y / k ]_ C e. CC |
| 149 |
147 148
|
nfim |
|- F/ k ( ( ( ph /\ x e. A ) /\ y e. B ) -> [_ y / k ]_ C e. CC ) |
| 150 |
|
eleq1w |
|- ( k = y -> ( k e. B <-> y e. B ) ) |
| 151 |
150
|
anbi2d |
|- ( k = y -> ( ( ( ph /\ x e. A ) /\ k e. B ) <-> ( ( ph /\ x e. A ) /\ y e. B ) ) ) |
| 152 |
151 83
|
imbi12d |
|- ( k = y -> ( ( ( ( ph /\ x e. A ) /\ k e. B ) -> C e. CC ) <-> ( ( ( ph /\ x e. A ) /\ y e. B ) -> [_ y / k ]_ C e. CC ) ) ) |
| 153 |
3
|
recnd |
|- ( ( ( ph /\ x e. A ) /\ k e. B ) -> C e. CC ) |
| 154 |
149 152 153
|
chvarfv |
|- ( ( ( ph /\ x e. A ) /\ y e. B ) -> [_ y / k ]_ C e. CC ) |
| 155 |
154
|
anasss |
|- ( ( ph /\ ( x e. A /\ y e. B ) ) -> [_ y / k ]_ C e. CC ) |
| 156 |
146 1 2 155
|
fsum2d |
|- ( ph -> sum_ x e. A sum_ y e. B [_ y / k ]_ C = sum_ z e. U_ x e. A ( { x } X. B ) [_ ( 2nd ` z ) / k ]_ C ) |
| 157 |
140 156
|
eqtrd |
|- ( ph -> sum_ x e. A sum_ k e. B C = sum_ z e. U_ x e. A ( { x } X. B ) [_ ( 2nd ` z ) / k ]_ C ) |
| 158 |
157
|
adantr |
|- ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> sum_ x e. A sum_ k e. B C = sum_ z e. U_ x e. A ( { x } X. B ) [_ ( 2nd ` z ) / k ]_ C ) |
| 159 |
137 158
|
breqtrrd |
|- ( ( ph /\ ( ( f : U_ x e. A B -1-1-onto-> ran f /\ A. l e. U_ x e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ x e. A ( { x } X. B ) ) ) -> sum_ k e. U_ x e. A B C <_ sum_ x e. A sum_ k e. B C ) |
| 160 |
13 159
|
exlimddv |
|- ( ph -> sum_ k e. U_ x e. A B C <_ sum_ x e. A sum_ k e. B C ) |