Step |
Hyp |
Ref |
Expression |
1 |
|
nn0p1nn |
|- ( K e. NN0 -> ( K + 1 ) e. NN ) |
2 |
1
|
adantr |
|- ( ( K e. NN0 /\ M e. NN0 ) -> ( K + 1 ) e. NN ) |
3 |
2
|
nncnd |
|- ( ( K e. NN0 /\ M e. NN0 ) -> ( K + 1 ) e. CC ) |
4 |
|
fzfid |
|- ( ( K e. NN0 /\ M e. NN0 ) -> ( 0 ... M ) e. Fin ) |
5 |
|
elfzelz |
|- ( n e. ( 0 ... M ) -> n e. ZZ ) |
6 |
5
|
zcnd |
|- ( n e. ( 0 ... M ) -> n e. CC ) |
7 |
|
simpl |
|- ( ( K e. NN0 /\ M e. NN0 ) -> K e. NN0 ) |
8 |
|
expcl |
|- ( ( n e. CC /\ K e. NN0 ) -> ( n ^ K ) e. CC ) |
9 |
6 7 8
|
syl2anr |
|- ( ( ( K e. NN0 /\ M e. NN0 ) /\ n e. ( 0 ... M ) ) -> ( n ^ K ) e. CC ) |
10 |
4 9
|
fsumcl |
|- ( ( K e. NN0 /\ M e. NN0 ) -> sum_ n e. ( 0 ... M ) ( n ^ K ) e. CC ) |
11 |
2
|
nnne0d |
|- ( ( K e. NN0 /\ M e. NN0 ) -> ( K + 1 ) =/= 0 ) |
12 |
4 3 9
|
fsummulc2 |
|- ( ( K e. NN0 /\ M e. NN0 ) -> ( ( K + 1 ) x. sum_ n e. ( 0 ... M ) ( n ^ K ) ) = sum_ n e. ( 0 ... M ) ( ( K + 1 ) x. ( n ^ K ) ) ) |
13 |
|
bpolydif |
|- ( ( ( K + 1 ) e. NN /\ n e. CC ) -> ( ( ( K + 1 ) BernPoly ( n + 1 ) ) - ( ( K + 1 ) BernPoly n ) ) = ( ( K + 1 ) x. ( n ^ ( ( K + 1 ) - 1 ) ) ) ) |
14 |
2 6 13
|
syl2an |
|- ( ( ( K e. NN0 /\ M e. NN0 ) /\ n e. ( 0 ... M ) ) -> ( ( ( K + 1 ) BernPoly ( n + 1 ) ) - ( ( K + 1 ) BernPoly n ) ) = ( ( K + 1 ) x. ( n ^ ( ( K + 1 ) - 1 ) ) ) ) |
15 |
|
nn0cn |
|- ( K e. NN0 -> K e. CC ) |
16 |
15
|
ad2antrr |
|- ( ( ( K e. NN0 /\ M e. NN0 ) /\ n e. ( 0 ... M ) ) -> K e. CC ) |
17 |
|
ax-1cn |
|- 1 e. CC |
18 |
|
pncan |
|- ( ( K e. CC /\ 1 e. CC ) -> ( ( K + 1 ) - 1 ) = K ) |
19 |
16 17 18
|
sylancl |
|- ( ( ( K e. NN0 /\ M e. NN0 ) /\ n e. ( 0 ... M ) ) -> ( ( K + 1 ) - 1 ) = K ) |
20 |
19
|
oveq2d |
|- ( ( ( K e. NN0 /\ M e. NN0 ) /\ n e. ( 0 ... M ) ) -> ( n ^ ( ( K + 1 ) - 1 ) ) = ( n ^ K ) ) |
21 |
20
|
oveq2d |
|- ( ( ( K e. NN0 /\ M e. NN0 ) /\ n e. ( 0 ... M ) ) -> ( ( K + 1 ) x. ( n ^ ( ( K + 1 ) - 1 ) ) ) = ( ( K + 1 ) x. ( n ^ K ) ) ) |
22 |
14 21
|
eqtrd |
|- ( ( ( K e. NN0 /\ M e. NN0 ) /\ n e. ( 0 ... M ) ) -> ( ( ( K + 1 ) BernPoly ( n + 1 ) ) - ( ( K + 1 ) BernPoly n ) ) = ( ( K + 1 ) x. ( n ^ K ) ) ) |
23 |
22
|
sumeq2dv |
|- ( ( K e. NN0 /\ M e. NN0 ) -> sum_ n e. ( 0 ... M ) ( ( ( K + 1 ) BernPoly ( n + 1 ) ) - ( ( K + 1 ) BernPoly n ) ) = sum_ n e. ( 0 ... M ) ( ( K + 1 ) x. ( n ^ K ) ) ) |
24 |
|
oveq2 |
|- ( k = n -> ( ( K + 1 ) BernPoly k ) = ( ( K + 1 ) BernPoly n ) ) |
25 |
|
oveq2 |
|- ( k = ( n + 1 ) -> ( ( K + 1 ) BernPoly k ) = ( ( K + 1 ) BernPoly ( n + 1 ) ) ) |
26 |
|
oveq2 |
|- ( k = 0 -> ( ( K + 1 ) BernPoly k ) = ( ( K + 1 ) BernPoly 0 ) ) |
27 |
|
oveq2 |
|- ( k = ( M + 1 ) -> ( ( K + 1 ) BernPoly k ) = ( ( K + 1 ) BernPoly ( M + 1 ) ) ) |
28 |
|
nn0z |
|- ( M e. NN0 -> M e. ZZ ) |
29 |
28
|
adantl |
|- ( ( K e. NN0 /\ M e. NN0 ) -> M e. ZZ ) |
30 |
|
peano2nn0 |
|- ( M e. NN0 -> ( M + 1 ) e. NN0 ) |
31 |
30
|
adantl |
|- ( ( K e. NN0 /\ M e. NN0 ) -> ( M + 1 ) e. NN0 ) |
32 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
33 |
31 32
|
eleqtrdi |
|- ( ( K e. NN0 /\ M e. NN0 ) -> ( M + 1 ) e. ( ZZ>= ` 0 ) ) |
34 |
|
peano2nn0 |
|- ( K e. NN0 -> ( K + 1 ) e. NN0 ) |
35 |
34
|
ad2antrr |
|- ( ( ( K e. NN0 /\ M e. NN0 ) /\ k e. ( 0 ... ( M + 1 ) ) ) -> ( K + 1 ) e. NN0 ) |
36 |
|
elfznn0 |
|- ( k e. ( 0 ... ( M + 1 ) ) -> k e. NN0 ) |
37 |
36
|
adantl |
|- ( ( ( K e. NN0 /\ M e. NN0 ) /\ k e. ( 0 ... ( M + 1 ) ) ) -> k e. NN0 ) |
38 |
37
|
nn0cnd |
|- ( ( ( K e. NN0 /\ M e. NN0 ) /\ k e. ( 0 ... ( M + 1 ) ) ) -> k e. CC ) |
39 |
|
bpolycl |
|- ( ( ( K + 1 ) e. NN0 /\ k e. CC ) -> ( ( K + 1 ) BernPoly k ) e. CC ) |
40 |
35 38 39
|
syl2anc |
|- ( ( ( K e. NN0 /\ M e. NN0 ) /\ k e. ( 0 ... ( M + 1 ) ) ) -> ( ( K + 1 ) BernPoly k ) e. CC ) |
41 |
24 25 26 27 29 33 40
|
telfsum2 |
|- ( ( K e. NN0 /\ M e. NN0 ) -> sum_ n e. ( 0 ... M ) ( ( ( K + 1 ) BernPoly ( n + 1 ) ) - ( ( K + 1 ) BernPoly n ) ) = ( ( ( K + 1 ) BernPoly ( M + 1 ) ) - ( ( K + 1 ) BernPoly 0 ) ) ) |
42 |
12 23 41
|
3eqtr2d |
|- ( ( K e. NN0 /\ M e. NN0 ) -> ( ( K + 1 ) x. sum_ n e. ( 0 ... M ) ( n ^ K ) ) = ( ( ( K + 1 ) BernPoly ( M + 1 ) ) - ( ( K + 1 ) BernPoly 0 ) ) ) |
43 |
3 10 11 42
|
mvllmuld |
|- ( ( K e. NN0 /\ M e. NN0 ) -> sum_ n e. ( 0 ... M ) ( n ^ K ) = ( ( ( ( K + 1 ) BernPoly ( M + 1 ) ) - ( ( K + 1 ) BernPoly 0 ) ) / ( K + 1 ) ) ) |