Step |
Hyp |
Ref |
Expression |
1 |
|
fsumge0.1 |
|- ( ph -> A e. Fin ) |
2 |
|
fsumge0.2 |
|- ( ( ph /\ k e. A ) -> B e. RR ) |
3 |
|
fsumge0.3 |
|- ( ( ph /\ k e. A ) -> 0 <_ B ) |
4 |
|
fsumless.4 |
|- ( ph -> C C_ A ) |
5 |
|
difss |
|- ( A \ C ) C_ A |
6 |
|
ssfi |
|- ( ( A e. Fin /\ ( A \ C ) C_ A ) -> ( A \ C ) e. Fin ) |
7 |
1 5 6
|
sylancl |
|- ( ph -> ( A \ C ) e. Fin ) |
8 |
|
eldifi |
|- ( k e. ( A \ C ) -> k e. A ) |
9 |
8 2
|
sylan2 |
|- ( ( ph /\ k e. ( A \ C ) ) -> B e. RR ) |
10 |
8 3
|
sylan2 |
|- ( ( ph /\ k e. ( A \ C ) ) -> 0 <_ B ) |
11 |
7 9 10
|
fsumge0 |
|- ( ph -> 0 <_ sum_ k e. ( A \ C ) B ) |
12 |
1 4
|
ssfid |
|- ( ph -> C e. Fin ) |
13 |
4
|
sselda |
|- ( ( ph /\ k e. C ) -> k e. A ) |
14 |
13 2
|
syldan |
|- ( ( ph /\ k e. C ) -> B e. RR ) |
15 |
12 14
|
fsumrecl |
|- ( ph -> sum_ k e. C B e. RR ) |
16 |
7 9
|
fsumrecl |
|- ( ph -> sum_ k e. ( A \ C ) B e. RR ) |
17 |
15 16
|
addge01d |
|- ( ph -> ( 0 <_ sum_ k e. ( A \ C ) B <-> sum_ k e. C B <_ ( sum_ k e. C B + sum_ k e. ( A \ C ) B ) ) ) |
18 |
11 17
|
mpbid |
|- ( ph -> sum_ k e. C B <_ ( sum_ k e. C B + sum_ k e. ( A \ C ) B ) ) |
19 |
|
disjdif |
|- ( C i^i ( A \ C ) ) = (/) |
20 |
19
|
a1i |
|- ( ph -> ( C i^i ( A \ C ) ) = (/) ) |
21 |
|
undif |
|- ( C C_ A <-> ( C u. ( A \ C ) ) = A ) |
22 |
4 21
|
sylib |
|- ( ph -> ( C u. ( A \ C ) ) = A ) |
23 |
22
|
eqcomd |
|- ( ph -> A = ( C u. ( A \ C ) ) ) |
24 |
2
|
recnd |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
25 |
20 23 1 24
|
fsumsplit |
|- ( ph -> sum_ k e. A B = ( sum_ k e. C B + sum_ k e. ( A \ C ) B ) ) |
26 |
18 25
|
breqtrrd |
|- ( ph -> sum_ k e. C B <_ sum_ k e. A B ) |