Step |
Hyp |
Ref |
Expression |
1 |
|
fsumlessf.k |
|- F/ k ph |
2 |
|
fsumge0.a |
|- ( ph -> A e. Fin ) |
3 |
|
fsumge0.b |
|- ( ( ph /\ k e. A ) -> B e. RR ) |
4 |
|
fsumge0.l |
|- ( ( ph /\ k e. A ) -> 0 <_ B ) |
5 |
|
fsumless.c |
|- ( ph -> C C_ A ) |
6 |
|
nfv |
|- F/ k j e. A |
7 |
1 6
|
nfan |
|- F/ k ( ph /\ j e. A ) |
8 |
|
nfcsb1v |
|- F/_ k [_ j / k ]_ B |
9 |
8
|
nfel1 |
|- F/ k [_ j / k ]_ B e. RR |
10 |
7 9
|
nfim |
|- F/ k ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. RR ) |
11 |
|
eleq1w |
|- ( k = j -> ( k e. A <-> j e. A ) ) |
12 |
11
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. A ) <-> ( ph /\ j e. A ) ) ) |
13 |
|
csbeq1a |
|- ( k = j -> B = [_ j / k ]_ B ) |
14 |
13
|
eleq1d |
|- ( k = j -> ( B e. RR <-> [_ j / k ]_ B e. RR ) ) |
15 |
12 14
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. A ) -> B e. RR ) <-> ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. RR ) ) ) |
16 |
10 15 3
|
chvarfv |
|- ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. RR ) |
17 |
|
nfcv |
|- F/_ k 0 |
18 |
|
nfcv |
|- F/_ k <_ |
19 |
17 18 8
|
nfbr |
|- F/ k 0 <_ [_ j / k ]_ B |
20 |
7 19
|
nfim |
|- F/ k ( ( ph /\ j e. A ) -> 0 <_ [_ j / k ]_ B ) |
21 |
13
|
breq2d |
|- ( k = j -> ( 0 <_ B <-> 0 <_ [_ j / k ]_ B ) ) |
22 |
12 21
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. A ) -> 0 <_ B ) <-> ( ( ph /\ j e. A ) -> 0 <_ [_ j / k ]_ B ) ) ) |
23 |
20 22 4
|
chvarfv |
|- ( ( ph /\ j e. A ) -> 0 <_ [_ j / k ]_ B ) |
24 |
2 16 23 5
|
fsumless |
|- ( ph -> sum_ j e. C [_ j / k ]_ B <_ sum_ j e. A [_ j / k ]_ B ) |
25 |
|
nfcv |
|- F/_ j C |
26 |
|
nfcv |
|- F/_ k C |
27 |
|
nfcv |
|- F/_ j B |
28 |
13 25 26 27 8
|
cbvsum |
|- sum_ k e. C B = sum_ j e. C [_ j / k ]_ B |
29 |
|
nfcv |
|- F/_ j A |
30 |
|
nfcv |
|- F/_ k A |
31 |
13 29 30 27 8
|
cbvsum |
|- sum_ k e. A B = sum_ j e. A [_ j / k ]_ B |
32 |
28 31
|
breq12i |
|- ( sum_ k e. C B <_ sum_ k e. A B <-> sum_ j e. C [_ j / k ]_ B <_ sum_ j e. A [_ j / k ]_ B ) |
33 |
24 32
|
sylibr |
|- ( ph -> sum_ k e. C B <_ sum_ k e. A B ) |