| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumlt.1 |
|- ( ph -> A e. Fin ) |
| 2 |
|
fsumlt.2 |
|- ( ph -> A =/= (/) ) |
| 3 |
|
fsumlt.3 |
|- ( ( ph /\ k e. A ) -> B e. RR ) |
| 4 |
|
fsumlt.4 |
|- ( ( ph /\ k e. A ) -> C e. RR ) |
| 5 |
|
fsumlt.5 |
|- ( ( ph /\ k e. A ) -> B < C ) |
| 6 |
|
difrp |
|- ( ( B e. RR /\ C e. RR ) -> ( B < C <-> ( C - B ) e. RR+ ) ) |
| 7 |
3 4 6
|
syl2anc |
|- ( ( ph /\ k e. A ) -> ( B < C <-> ( C - B ) e. RR+ ) ) |
| 8 |
5 7
|
mpbid |
|- ( ( ph /\ k e. A ) -> ( C - B ) e. RR+ ) |
| 9 |
1 2 8
|
fsumrpcl |
|- ( ph -> sum_ k e. A ( C - B ) e. RR+ ) |
| 10 |
9
|
rpgt0d |
|- ( ph -> 0 < sum_ k e. A ( C - B ) ) |
| 11 |
4
|
recnd |
|- ( ( ph /\ k e. A ) -> C e. CC ) |
| 12 |
3
|
recnd |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
| 13 |
1 11 12
|
fsumsub |
|- ( ph -> sum_ k e. A ( C - B ) = ( sum_ k e. A C - sum_ k e. A B ) ) |
| 14 |
10 13
|
breqtrd |
|- ( ph -> 0 < ( sum_ k e. A C - sum_ k e. A B ) ) |
| 15 |
1 3
|
fsumrecl |
|- ( ph -> sum_ k e. A B e. RR ) |
| 16 |
1 4
|
fsumrecl |
|- ( ph -> sum_ k e. A C e. RR ) |
| 17 |
15 16
|
posdifd |
|- ( ph -> ( sum_ k e. A B < sum_ k e. A C <-> 0 < ( sum_ k e. A C - sum_ k e. A B ) ) ) |
| 18 |
14 17
|
mpbird |
|- ( ph -> sum_ k e. A B < sum_ k e. A C ) |