Step |
Hyp |
Ref |
Expression |
1 |
|
fsumm1.1 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
2 |
|
fsumm1.2 |
|- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
3 |
|
fsumm1.3 |
|- ( k = N -> A = B ) |
4 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
5 |
1 4
|
syl |
|- ( ph -> N e. ZZ ) |
6 |
|
fzsn |
|- ( N e. ZZ -> ( N ... N ) = { N } ) |
7 |
5 6
|
syl |
|- ( ph -> ( N ... N ) = { N } ) |
8 |
7
|
ineq2d |
|- ( ph -> ( ( M ... ( N - 1 ) ) i^i ( N ... N ) ) = ( ( M ... ( N - 1 ) ) i^i { N } ) ) |
9 |
5
|
zred |
|- ( ph -> N e. RR ) |
10 |
9
|
ltm1d |
|- ( ph -> ( N - 1 ) < N ) |
11 |
|
fzdisj |
|- ( ( N - 1 ) < N -> ( ( M ... ( N - 1 ) ) i^i ( N ... N ) ) = (/) ) |
12 |
10 11
|
syl |
|- ( ph -> ( ( M ... ( N - 1 ) ) i^i ( N ... N ) ) = (/) ) |
13 |
8 12
|
eqtr3d |
|- ( ph -> ( ( M ... ( N - 1 ) ) i^i { N } ) = (/) ) |
14 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
15 |
1 14
|
syl |
|- ( ph -> M e. ZZ ) |
16 |
|
peano2zm |
|- ( M e. ZZ -> ( M - 1 ) e. ZZ ) |
17 |
15 16
|
syl |
|- ( ph -> ( M - 1 ) e. ZZ ) |
18 |
15
|
zcnd |
|- ( ph -> M e. CC ) |
19 |
|
ax-1cn |
|- 1 e. CC |
20 |
|
npcan |
|- ( ( M e. CC /\ 1 e. CC ) -> ( ( M - 1 ) + 1 ) = M ) |
21 |
18 19 20
|
sylancl |
|- ( ph -> ( ( M - 1 ) + 1 ) = M ) |
22 |
21
|
fveq2d |
|- ( ph -> ( ZZ>= ` ( ( M - 1 ) + 1 ) ) = ( ZZ>= ` M ) ) |
23 |
1 22
|
eleqtrrd |
|- ( ph -> N e. ( ZZ>= ` ( ( M - 1 ) + 1 ) ) ) |
24 |
|
eluzp1m1 |
|- ( ( ( M - 1 ) e. ZZ /\ N e. ( ZZ>= ` ( ( M - 1 ) + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) |
25 |
17 23 24
|
syl2anc |
|- ( ph -> ( N - 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) |
26 |
|
fzsuc2 |
|- ( ( M e. ZZ /\ ( N - 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) -> ( M ... ( ( N - 1 ) + 1 ) ) = ( ( M ... ( N - 1 ) ) u. { ( ( N - 1 ) + 1 ) } ) ) |
27 |
15 25 26
|
syl2anc |
|- ( ph -> ( M ... ( ( N - 1 ) + 1 ) ) = ( ( M ... ( N - 1 ) ) u. { ( ( N - 1 ) + 1 ) } ) ) |
28 |
5
|
zcnd |
|- ( ph -> N e. CC ) |
29 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
30 |
28 19 29
|
sylancl |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
31 |
30
|
oveq2d |
|- ( ph -> ( M ... ( ( N - 1 ) + 1 ) ) = ( M ... N ) ) |
32 |
27 31
|
eqtr3d |
|- ( ph -> ( ( M ... ( N - 1 ) ) u. { ( ( N - 1 ) + 1 ) } ) = ( M ... N ) ) |
33 |
30
|
sneqd |
|- ( ph -> { ( ( N - 1 ) + 1 ) } = { N } ) |
34 |
33
|
uneq2d |
|- ( ph -> ( ( M ... ( N - 1 ) ) u. { ( ( N - 1 ) + 1 ) } ) = ( ( M ... ( N - 1 ) ) u. { N } ) ) |
35 |
32 34
|
eqtr3d |
|- ( ph -> ( M ... N ) = ( ( M ... ( N - 1 ) ) u. { N } ) ) |
36 |
|
fzfid |
|- ( ph -> ( M ... N ) e. Fin ) |
37 |
13 35 36 2
|
fsumsplit |
|- ( ph -> sum_ k e. ( M ... N ) A = ( sum_ k e. ( M ... ( N - 1 ) ) A + sum_ k e. { N } A ) ) |
38 |
3
|
eleq1d |
|- ( k = N -> ( A e. CC <-> B e. CC ) ) |
39 |
2
|
ralrimiva |
|- ( ph -> A. k e. ( M ... N ) A e. CC ) |
40 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
41 |
1 40
|
syl |
|- ( ph -> N e. ( M ... N ) ) |
42 |
38 39 41
|
rspcdva |
|- ( ph -> B e. CC ) |
43 |
3
|
sumsn |
|- ( ( N e. ( ZZ>= ` M ) /\ B e. CC ) -> sum_ k e. { N } A = B ) |
44 |
1 42 43
|
syl2anc |
|- ( ph -> sum_ k e. { N } A = B ) |
45 |
44
|
oveq2d |
|- ( ph -> ( sum_ k e. ( M ... ( N - 1 ) ) A + sum_ k e. { N } A ) = ( sum_ k e. ( M ... ( N - 1 ) ) A + B ) ) |
46 |
37 45
|
eqtrd |
|- ( ph -> sum_ k e. ( M ... N ) A = ( sum_ k e. ( M ... ( N - 1 ) ) A + B ) ) |