Step |
Hyp |
Ref |
Expression |
1 |
|
fsummulc2.1 |
|- ( ph -> A e. Fin ) |
2 |
|
fsummulc2.2 |
|- ( ph -> C e. CC ) |
3 |
|
fsummulc2.3 |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
4 |
1 2 3
|
fsummulc2 |
|- ( ph -> ( C x. sum_ k e. A B ) = sum_ k e. A ( C x. B ) ) |
5 |
1 3
|
fsumcl |
|- ( ph -> sum_ k e. A B e. CC ) |
6 |
5 2
|
mulcomd |
|- ( ph -> ( sum_ k e. A B x. C ) = ( C x. sum_ k e. A B ) ) |
7 |
2
|
adantr |
|- ( ( ph /\ k e. A ) -> C e. CC ) |
8 |
3 7
|
mulcomd |
|- ( ( ph /\ k e. A ) -> ( B x. C ) = ( C x. B ) ) |
9 |
8
|
sumeq2dv |
|- ( ph -> sum_ k e. A ( B x. C ) = sum_ k e. A ( C x. B ) ) |
10 |
4 6 9
|
3eqtr4d |
|- ( ph -> ( sum_ k e. A B x. C ) = sum_ k e. A ( B x. C ) ) |