Step |
Hyp |
Ref |
Expression |
1 |
|
fsummulc1f.ph |
|- F/ k ph |
2 |
|
fsummulclf.a |
|- ( ph -> A e. Fin ) |
3 |
|
fsummulclf.c |
|- ( ph -> C e. CC ) |
4 |
|
fsummulclf.b |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
5 |
|
csbeq1a |
|- ( k = j -> B = [_ j / k ]_ B ) |
6 |
|
nfcv |
|- F/_ j A |
7 |
|
nfcv |
|- F/_ k A |
8 |
|
nfcv |
|- F/_ j B |
9 |
|
nfcsb1v |
|- F/_ k [_ j / k ]_ B |
10 |
5 6 7 8 9
|
cbvsum |
|- sum_ k e. A B = sum_ j e. A [_ j / k ]_ B |
11 |
10
|
oveq1i |
|- ( sum_ k e. A B x. C ) = ( sum_ j e. A [_ j / k ]_ B x. C ) |
12 |
11
|
a1i |
|- ( ph -> ( sum_ k e. A B x. C ) = ( sum_ j e. A [_ j / k ]_ B x. C ) ) |
13 |
|
nfv |
|- F/ k j e. A |
14 |
1 13
|
nfan |
|- F/ k ( ph /\ j e. A ) |
15 |
9
|
nfel1 |
|- F/ k [_ j / k ]_ B e. CC |
16 |
14 15
|
nfim |
|- F/ k ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. CC ) |
17 |
|
eleq1w |
|- ( k = j -> ( k e. A <-> j e. A ) ) |
18 |
17
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. A ) <-> ( ph /\ j e. A ) ) ) |
19 |
5
|
eleq1d |
|- ( k = j -> ( B e. CC <-> [_ j / k ]_ B e. CC ) ) |
20 |
18 19
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. A ) -> B e. CC ) <-> ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. CC ) ) ) |
21 |
16 20 4
|
chvarfv |
|- ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. CC ) |
22 |
2 3 21
|
fsummulc1 |
|- ( ph -> ( sum_ j e. A [_ j / k ]_ B x. C ) = sum_ j e. A ( [_ j / k ]_ B x. C ) ) |
23 |
|
eqcom |
|- ( k = j <-> j = k ) |
24 |
23
|
imbi1i |
|- ( ( k = j -> B = [_ j / k ]_ B ) <-> ( j = k -> B = [_ j / k ]_ B ) ) |
25 |
|
eqcom |
|- ( B = [_ j / k ]_ B <-> [_ j / k ]_ B = B ) |
26 |
25
|
imbi2i |
|- ( ( j = k -> B = [_ j / k ]_ B ) <-> ( j = k -> [_ j / k ]_ B = B ) ) |
27 |
24 26
|
bitri |
|- ( ( k = j -> B = [_ j / k ]_ B ) <-> ( j = k -> [_ j / k ]_ B = B ) ) |
28 |
5 27
|
mpbi |
|- ( j = k -> [_ j / k ]_ B = B ) |
29 |
28
|
oveq1d |
|- ( j = k -> ( [_ j / k ]_ B x. C ) = ( B x. C ) ) |
30 |
|
nfcv |
|- F/_ k x. |
31 |
|
nfcv |
|- F/_ k C |
32 |
9 30 31
|
nfov |
|- F/_ k ( [_ j / k ]_ B x. C ) |
33 |
|
nfcv |
|- F/_ j ( B x. C ) |
34 |
29 7 6 32 33
|
cbvsum |
|- sum_ j e. A ( [_ j / k ]_ B x. C ) = sum_ k e. A ( B x. C ) |
35 |
34
|
a1i |
|- ( ph -> sum_ j e. A ( [_ j / k ]_ B x. C ) = sum_ k e. A ( B x. C ) ) |
36 |
12 22 35
|
3eqtrd |
|- ( ph -> ( sum_ k e. A B x. C ) = sum_ k e. A ( B x. C ) ) |