| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsummulc2.1 |
|- ( ph -> A e. Fin ) |
| 2 |
|
fsummulc2.2 |
|- ( ph -> C e. CC ) |
| 3 |
|
fsummulc2.3 |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
| 4 |
2
|
mul01d |
|- ( ph -> ( C x. 0 ) = 0 ) |
| 5 |
|
sumeq1 |
|- ( A = (/) -> sum_ k e. A B = sum_ k e. (/) B ) |
| 6 |
|
sum0 |
|- sum_ k e. (/) B = 0 |
| 7 |
5 6
|
eqtrdi |
|- ( A = (/) -> sum_ k e. A B = 0 ) |
| 8 |
7
|
oveq2d |
|- ( A = (/) -> ( C x. sum_ k e. A B ) = ( C x. 0 ) ) |
| 9 |
|
sumeq1 |
|- ( A = (/) -> sum_ k e. A ( C x. B ) = sum_ k e. (/) ( C x. B ) ) |
| 10 |
|
sum0 |
|- sum_ k e. (/) ( C x. B ) = 0 |
| 11 |
9 10
|
eqtrdi |
|- ( A = (/) -> sum_ k e. A ( C x. B ) = 0 ) |
| 12 |
8 11
|
eqeq12d |
|- ( A = (/) -> ( ( C x. sum_ k e. A B ) = sum_ k e. A ( C x. B ) <-> ( C x. 0 ) = 0 ) ) |
| 13 |
4 12
|
syl5ibrcom |
|- ( ph -> ( A = (/) -> ( C x. sum_ k e. A B ) = sum_ k e. A ( C x. B ) ) ) |
| 14 |
|
addcl |
|- ( ( n e. CC /\ m e. CC ) -> ( n + m ) e. CC ) |
| 15 |
14
|
adantl |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ ( n e. CC /\ m e. CC ) ) -> ( n + m ) e. CC ) |
| 16 |
2
|
adantr |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> C e. CC ) |
| 17 |
|
adddi |
|- ( ( C e. CC /\ n e. CC /\ m e. CC ) -> ( C x. ( n + m ) ) = ( ( C x. n ) + ( C x. m ) ) ) |
| 18 |
17
|
3expb |
|- ( ( C e. CC /\ ( n e. CC /\ m e. CC ) ) -> ( C x. ( n + m ) ) = ( ( C x. n ) + ( C x. m ) ) ) |
| 19 |
16 18
|
sylan |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ ( n e. CC /\ m e. CC ) ) -> ( C x. ( n + m ) ) = ( ( C x. n ) + ( C x. m ) ) ) |
| 20 |
|
simprl |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( # ` A ) e. NN ) |
| 21 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 22 |
20 21
|
eleqtrdi |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( # ` A ) e. ( ZZ>= ` 1 ) ) |
| 23 |
3
|
fmpttd |
|- ( ph -> ( k e. A |-> B ) : A --> CC ) |
| 24 |
23
|
ad2antrr |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( k e. A |-> B ) : A --> CC ) |
| 25 |
|
simprr |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
| 26 |
25
|
adantr |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
| 27 |
|
f1of |
|- ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> f : ( 1 ... ( # ` A ) ) --> A ) |
| 28 |
26 27
|
syl |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> f : ( 1 ... ( # ` A ) ) --> A ) |
| 29 |
|
fco |
|- ( ( ( k e. A |-> B ) : A --> CC /\ f : ( 1 ... ( # ` A ) ) --> A ) -> ( ( k e. A |-> B ) o. f ) : ( 1 ... ( # ` A ) ) --> CC ) |
| 30 |
24 28 29
|
syl2anc |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( k e. A |-> B ) o. f ) : ( 1 ... ( # ` A ) ) --> CC ) |
| 31 |
|
simpr |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> n e. ( 1 ... ( # ` A ) ) ) |
| 32 |
30 31
|
ffvelcdmd |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` n ) e. CC ) |
| 33 |
28 31
|
ffvelcdmd |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( f ` n ) e. A ) |
| 34 |
|
simpr |
|- ( ( ph /\ k e. A ) -> k e. A ) |
| 35 |
2
|
adantr |
|- ( ( ph /\ k e. A ) -> C e. CC ) |
| 36 |
35 3
|
mulcld |
|- ( ( ph /\ k e. A ) -> ( C x. B ) e. CC ) |
| 37 |
|
eqid |
|- ( k e. A |-> ( C x. B ) ) = ( k e. A |-> ( C x. B ) ) |
| 38 |
37
|
fvmpt2 |
|- ( ( k e. A /\ ( C x. B ) e. CC ) -> ( ( k e. A |-> ( C x. B ) ) ` k ) = ( C x. B ) ) |
| 39 |
34 36 38
|
syl2anc |
|- ( ( ph /\ k e. A ) -> ( ( k e. A |-> ( C x. B ) ) ` k ) = ( C x. B ) ) |
| 40 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
| 41 |
40
|
fvmpt2 |
|- ( ( k e. A /\ B e. CC ) -> ( ( k e. A |-> B ) ` k ) = B ) |
| 42 |
34 3 41
|
syl2anc |
|- ( ( ph /\ k e. A ) -> ( ( k e. A |-> B ) ` k ) = B ) |
| 43 |
42
|
oveq2d |
|- ( ( ph /\ k e. A ) -> ( C x. ( ( k e. A |-> B ) ` k ) ) = ( C x. B ) ) |
| 44 |
39 43
|
eqtr4d |
|- ( ( ph /\ k e. A ) -> ( ( k e. A |-> ( C x. B ) ) ` k ) = ( C x. ( ( k e. A |-> B ) ` k ) ) ) |
| 45 |
44
|
ralrimiva |
|- ( ph -> A. k e. A ( ( k e. A |-> ( C x. B ) ) ` k ) = ( C x. ( ( k e. A |-> B ) ` k ) ) ) |
| 46 |
45
|
ad2antrr |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> A. k e. A ( ( k e. A |-> ( C x. B ) ) ` k ) = ( C x. ( ( k e. A |-> B ) ` k ) ) ) |
| 47 |
|
nffvmpt1 |
|- F/_ k ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) |
| 48 |
|
nfcv |
|- F/_ k C |
| 49 |
|
nfcv |
|- F/_ k x. |
| 50 |
|
nffvmpt1 |
|- F/_ k ( ( k e. A |-> B ) ` ( f ` n ) ) |
| 51 |
48 49 50
|
nfov |
|- F/_ k ( C x. ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
| 52 |
47 51
|
nfeq |
|- F/ k ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) = ( C x. ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
| 53 |
|
fveq2 |
|- ( k = ( f ` n ) -> ( ( k e. A |-> ( C x. B ) ) ` k ) = ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) ) |
| 54 |
|
fveq2 |
|- ( k = ( f ` n ) -> ( ( k e. A |-> B ) ` k ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
| 55 |
54
|
oveq2d |
|- ( k = ( f ` n ) -> ( C x. ( ( k e. A |-> B ) ` k ) ) = ( C x. ( ( k e. A |-> B ) ` ( f ` n ) ) ) ) |
| 56 |
53 55
|
eqeq12d |
|- ( k = ( f ` n ) -> ( ( ( k e. A |-> ( C x. B ) ) ` k ) = ( C x. ( ( k e. A |-> B ) ` k ) ) <-> ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) = ( C x. ( ( k e. A |-> B ) ` ( f ` n ) ) ) ) ) |
| 57 |
52 56
|
rspc |
|- ( ( f ` n ) e. A -> ( A. k e. A ( ( k e. A |-> ( C x. B ) ) ` k ) = ( C x. ( ( k e. A |-> B ) ` k ) ) -> ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) = ( C x. ( ( k e. A |-> B ) ` ( f ` n ) ) ) ) ) |
| 58 |
33 46 57
|
sylc |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) = ( C x. ( ( k e. A |-> B ) ` ( f ` n ) ) ) ) |
| 59 |
27
|
ad2antll |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) --> A ) |
| 60 |
|
fvco3 |
|- ( ( f : ( 1 ... ( # ` A ) ) --> A /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> ( C x. B ) ) o. f ) ` n ) = ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) ) |
| 61 |
59 60
|
sylan |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> ( C x. B ) ) o. f ) ` n ) = ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) ) |
| 62 |
|
fvco3 |
|- ( ( f : ( 1 ... ( # ` A ) ) --> A /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` n ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
| 63 |
59 62
|
sylan |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` n ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
| 64 |
63
|
oveq2d |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( C x. ( ( ( k e. A |-> B ) o. f ) ` n ) ) = ( C x. ( ( k e. A |-> B ) ` ( f ` n ) ) ) ) |
| 65 |
58 61 64
|
3eqtr4d |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> ( C x. B ) ) o. f ) ` n ) = ( C x. ( ( ( k e. A |-> B ) o. f ) ` n ) ) ) |
| 66 |
15 19 22 32 65
|
seqdistr |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( seq 1 ( + , ( ( k e. A |-> ( C x. B ) ) o. f ) ) ` ( # ` A ) ) = ( C x. ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) ) |
| 67 |
|
fveq2 |
|- ( m = ( f ` n ) -> ( ( k e. A |-> ( C x. B ) ) ` m ) = ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) ) |
| 68 |
36
|
fmpttd |
|- ( ph -> ( k e. A |-> ( C x. B ) ) : A --> CC ) |
| 69 |
68
|
adantr |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( k e. A |-> ( C x. B ) ) : A --> CC ) |
| 70 |
69
|
ffvelcdmda |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. A ) -> ( ( k e. A |-> ( C x. B ) ) ` m ) e. CC ) |
| 71 |
67 20 25 70 61
|
fsum |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ m e. A ( ( k e. A |-> ( C x. B ) ) ` m ) = ( seq 1 ( + , ( ( k e. A |-> ( C x. B ) ) o. f ) ) ` ( # ` A ) ) ) |
| 72 |
|
fveq2 |
|- ( m = ( f ` n ) -> ( ( k e. A |-> B ) ` m ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
| 73 |
23
|
adantr |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( k e. A |-> B ) : A --> CC ) |
| 74 |
73
|
ffvelcdmda |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. A ) -> ( ( k e. A |-> B ) ` m ) e. CC ) |
| 75 |
72 20 25 74 63
|
fsum |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ m e. A ( ( k e. A |-> B ) ` m ) = ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) |
| 76 |
75
|
oveq2d |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( C x. sum_ m e. A ( ( k e. A |-> B ) ` m ) ) = ( C x. ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) ) |
| 77 |
66 71 76
|
3eqtr4rd |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( C x. sum_ m e. A ( ( k e. A |-> B ) ` m ) ) = sum_ m e. A ( ( k e. A |-> ( C x. B ) ) ` m ) ) |
| 78 |
|
sumfc |
|- sum_ m e. A ( ( k e. A |-> B ) ` m ) = sum_ k e. A B |
| 79 |
78
|
oveq2i |
|- ( C x. sum_ m e. A ( ( k e. A |-> B ) ` m ) ) = ( C x. sum_ k e. A B ) |
| 80 |
|
sumfc |
|- sum_ m e. A ( ( k e. A |-> ( C x. B ) ) ` m ) = sum_ k e. A ( C x. B ) |
| 81 |
77 79 80
|
3eqtr3g |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( C x. sum_ k e. A B ) = sum_ k e. A ( C x. B ) ) |
| 82 |
81
|
expr |
|- ( ( ph /\ ( # ` A ) e. NN ) -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> ( C x. sum_ k e. A B ) = sum_ k e. A ( C x. B ) ) ) |
| 83 |
82
|
exlimdv |
|- ( ( ph /\ ( # ` A ) e. NN ) -> ( E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> ( C x. sum_ k e. A B ) = sum_ k e. A ( C x. B ) ) ) |
| 84 |
83
|
expimpd |
|- ( ph -> ( ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( C x. sum_ k e. A B ) = sum_ k e. A ( C x. B ) ) ) |
| 85 |
|
fz1f1o |
|- ( A e. Fin -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
| 86 |
1 85
|
syl |
|- ( ph -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
| 87 |
13 84 86
|
mpjaod |
|- ( ph -> ( C x. sum_ k e. A B ) = sum_ k e. A ( C x. B ) ) |