Step |
Hyp |
Ref |
Expression |
1 |
|
fsummulc2.1 |
|- ( ph -> A e. Fin ) |
2 |
|
fsummulc2.2 |
|- ( ph -> C e. CC ) |
3 |
|
fsummulc2.3 |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
4 |
2
|
mul01d |
|- ( ph -> ( C x. 0 ) = 0 ) |
5 |
|
sumeq1 |
|- ( A = (/) -> sum_ k e. A B = sum_ k e. (/) B ) |
6 |
|
sum0 |
|- sum_ k e. (/) B = 0 |
7 |
5 6
|
eqtrdi |
|- ( A = (/) -> sum_ k e. A B = 0 ) |
8 |
7
|
oveq2d |
|- ( A = (/) -> ( C x. sum_ k e. A B ) = ( C x. 0 ) ) |
9 |
|
sumeq1 |
|- ( A = (/) -> sum_ k e. A ( C x. B ) = sum_ k e. (/) ( C x. B ) ) |
10 |
|
sum0 |
|- sum_ k e. (/) ( C x. B ) = 0 |
11 |
9 10
|
eqtrdi |
|- ( A = (/) -> sum_ k e. A ( C x. B ) = 0 ) |
12 |
8 11
|
eqeq12d |
|- ( A = (/) -> ( ( C x. sum_ k e. A B ) = sum_ k e. A ( C x. B ) <-> ( C x. 0 ) = 0 ) ) |
13 |
4 12
|
syl5ibrcom |
|- ( ph -> ( A = (/) -> ( C x. sum_ k e. A B ) = sum_ k e. A ( C x. B ) ) ) |
14 |
|
addcl |
|- ( ( n e. CC /\ m e. CC ) -> ( n + m ) e. CC ) |
15 |
14
|
adantl |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ ( n e. CC /\ m e. CC ) ) -> ( n + m ) e. CC ) |
16 |
2
|
adantr |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> C e. CC ) |
17 |
|
adddi |
|- ( ( C e. CC /\ n e. CC /\ m e. CC ) -> ( C x. ( n + m ) ) = ( ( C x. n ) + ( C x. m ) ) ) |
18 |
17
|
3expb |
|- ( ( C e. CC /\ ( n e. CC /\ m e. CC ) ) -> ( C x. ( n + m ) ) = ( ( C x. n ) + ( C x. m ) ) ) |
19 |
16 18
|
sylan |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ ( n e. CC /\ m e. CC ) ) -> ( C x. ( n + m ) ) = ( ( C x. n ) + ( C x. m ) ) ) |
20 |
|
simprl |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( # ` A ) e. NN ) |
21 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
22 |
20 21
|
eleqtrdi |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( # ` A ) e. ( ZZ>= ` 1 ) ) |
23 |
3
|
fmpttd |
|- ( ph -> ( k e. A |-> B ) : A --> CC ) |
24 |
23
|
ad2antrr |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( k e. A |-> B ) : A --> CC ) |
25 |
|
simprr |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
26 |
25
|
adantr |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
27 |
|
f1of |
|- ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> f : ( 1 ... ( # ` A ) ) --> A ) |
28 |
26 27
|
syl |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> f : ( 1 ... ( # ` A ) ) --> A ) |
29 |
|
fco |
|- ( ( ( k e. A |-> B ) : A --> CC /\ f : ( 1 ... ( # ` A ) ) --> A ) -> ( ( k e. A |-> B ) o. f ) : ( 1 ... ( # ` A ) ) --> CC ) |
30 |
24 28 29
|
syl2anc |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( k e. A |-> B ) o. f ) : ( 1 ... ( # ` A ) ) --> CC ) |
31 |
|
simpr |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> n e. ( 1 ... ( # ` A ) ) ) |
32 |
30 31
|
ffvelrnd |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` n ) e. CC ) |
33 |
28 31
|
ffvelrnd |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( f ` n ) e. A ) |
34 |
|
simpr |
|- ( ( ph /\ k e. A ) -> k e. A ) |
35 |
2
|
adantr |
|- ( ( ph /\ k e. A ) -> C e. CC ) |
36 |
35 3
|
mulcld |
|- ( ( ph /\ k e. A ) -> ( C x. B ) e. CC ) |
37 |
|
eqid |
|- ( k e. A |-> ( C x. B ) ) = ( k e. A |-> ( C x. B ) ) |
38 |
37
|
fvmpt2 |
|- ( ( k e. A /\ ( C x. B ) e. CC ) -> ( ( k e. A |-> ( C x. B ) ) ` k ) = ( C x. B ) ) |
39 |
34 36 38
|
syl2anc |
|- ( ( ph /\ k e. A ) -> ( ( k e. A |-> ( C x. B ) ) ` k ) = ( C x. B ) ) |
40 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
41 |
40
|
fvmpt2 |
|- ( ( k e. A /\ B e. CC ) -> ( ( k e. A |-> B ) ` k ) = B ) |
42 |
34 3 41
|
syl2anc |
|- ( ( ph /\ k e. A ) -> ( ( k e. A |-> B ) ` k ) = B ) |
43 |
42
|
oveq2d |
|- ( ( ph /\ k e. A ) -> ( C x. ( ( k e. A |-> B ) ` k ) ) = ( C x. B ) ) |
44 |
39 43
|
eqtr4d |
|- ( ( ph /\ k e. A ) -> ( ( k e. A |-> ( C x. B ) ) ` k ) = ( C x. ( ( k e. A |-> B ) ` k ) ) ) |
45 |
44
|
ralrimiva |
|- ( ph -> A. k e. A ( ( k e. A |-> ( C x. B ) ) ` k ) = ( C x. ( ( k e. A |-> B ) ` k ) ) ) |
46 |
45
|
ad2antrr |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> A. k e. A ( ( k e. A |-> ( C x. B ) ) ` k ) = ( C x. ( ( k e. A |-> B ) ` k ) ) ) |
47 |
|
nffvmpt1 |
|- F/_ k ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) |
48 |
|
nfcv |
|- F/_ k C |
49 |
|
nfcv |
|- F/_ k x. |
50 |
|
nffvmpt1 |
|- F/_ k ( ( k e. A |-> B ) ` ( f ` n ) ) |
51 |
48 49 50
|
nfov |
|- F/_ k ( C x. ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
52 |
47 51
|
nfeq |
|- F/ k ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) = ( C x. ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
53 |
|
fveq2 |
|- ( k = ( f ` n ) -> ( ( k e. A |-> ( C x. B ) ) ` k ) = ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) ) |
54 |
|
fveq2 |
|- ( k = ( f ` n ) -> ( ( k e. A |-> B ) ` k ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
55 |
54
|
oveq2d |
|- ( k = ( f ` n ) -> ( C x. ( ( k e. A |-> B ) ` k ) ) = ( C x. ( ( k e. A |-> B ) ` ( f ` n ) ) ) ) |
56 |
53 55
|
eqeq12d |
|- ( k = ( f ` n ) -> ( ( ( k e. A |-> ( C x. B ) ) ` k ) = ( C x. ( ( k e. A |-> B ) ` k ) ) <-> ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) = ( C x. ( ( k e. A |-> B ) ` ( f ` n ) ) ) ) ) |
57 |
52 56
|
rspc |
|- ( ( f ` n ) e. A -> ( A. k e. A ( ( k e. A |-> ( C x. B ) ) ` k ) = ( C x. ( ( k e. A |-> B ) ` k ) ) -> ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) = ( C x. ( ( k e. A |-> B ) ` ( f ` n ) ) ) ) ) |
58 |
33 46 57
|
sylc |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) = ( C x. ( ( k e. A |-> B ) ` ( f ` n ) ) ) ) |
59 |
27
|
ad2antll |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) --> A ) |
60 |
|
fvco3 |
|- ( ( f : ( 1 ... ( # ` A ) ) --> A /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> ( C x. B ) ) o. f ) ` n ) = ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) ) |
61 |
59 60
|
sylan |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> ( C x. B ) ) o. f ) ` n ) = ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) ) |
62 |
|
fvco3 |
|- ( ( f : ( 1 ... ( # ` A ) ) --> A /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` n ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
63 |
59 62
|
sylan |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` n ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
64 |
63
|
oveq2d |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( C x. ( ( ( k e. A |-> B ) o. f ) ` n ) ) = ( C x. ( ( k e. A |-> B ) ` ( f ` n ) ) ) ) |
65 |
58 61 64
|
3eqtr4d |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> ( C x. B ) ) o. f ) ` n ) = ( C x. ( ( ( k e. A |-> B ) o. f ) ` n ) ) ) |
66 |
15 19 22 32 65
|
seqdistr |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( seq 1 ( + , ( ( k e. A |-> ( C x. B ) ) o. f ) ) ` ( # ` A ) ) = ( C x. ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) ) |
67 |
|
fveq2 |
|- ( m = ( f ` n ) -> ( ( k e. A |-> ( C x. B ) ) ` m ) = ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) ) |
68 |
36
|
fmpttd |
|- ( ph -> ( k e. A |-> ( C x. B ) ) : A --> CC ) |
69 |
68
|
adantr |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( k e. A |-> ( C x. B ) ) : A --> CC ) |
70 |
69
|
ffvelrnda |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. A ) -> ( ( k e. A |-> ( C x. B ) ) ` m ) e. CC ) |
71 |
67 20 25 70 61
|
fsum |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ m e. A ( ( k e. A |-> ( C x. B ) ) ` m ) = ( seq 1 ( + , ( ( k e. A |-> ( C x. B ) ) o. f ) ) ` ( # ` A ) ) ) |
72 |
|
fveq2 |
|- ( m = ( f ` n ) -> ( ( k e. A |-> B ) ` m ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
73 |
23
|
adantr |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( k e. A |-> B ) : A --> CC ) |
74 |
73
|
ffvelrnda |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. A ) -> ( ( k e. A |-> B ) ` m ) e. CC ) |
75 |
72 20 25 74 63
|
fsum |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ m e. A ( ( k e. A |-> B ) ` m ) = ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) |
76 |
75
|
oveq2d |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( C x. sum_ m e. A ( ( k e. A |-> B ) ` m ) ) = ( C x. ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) ) |
77 |
66 71 76
|
3eqtr4rd |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( C x. sum_ m e. A ( ( k e. A |-> B ) ` m ) ) = sum_ m e. A ( ( k e. A |-> ( C x. B ) ) ` m ) ) |
78 |
|
sumfc |
|- sum_ m e. A ( ( k e. A |-> B ) ` m ) = sum_ k e. A B |
79 |
78
|
oveq2i |
|- ( C x. sum_ m e. A ( ( k e. A |-> B ) ` m ) ) = ( C x. sum_ k e. A B ) |
80 |
|
sumfc |
|- sum_ m e. A ( ( k e. A |-> ( C x. B ) ) ` m ) = sum_ k e. A ( C x. B ) |
81 |
77 79 80
|
3eqtr3g |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( C x. sum_ k e. A B ) = sum_ k e. A ( C x. B ) ) |
82 |
81
|
expr |
|- ( ( ph /\ ( # ` A ) e. NN ) -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> ( C x. sum_ k e. A B ) = sum_ k e. A ( C x. B ) ) ) |
83 |
82
|
exlimdv |
|- ( ( ph /\ ( # ` A ) e. NN ) -> ( E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> ( C x. sum_ k e. A B ) = sum_ k e. A ( C x. B ) ) ) |
84 |
83
|
expimpd |
|- ( ph -> ( ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( C x. sum_ k e. A B ) = sum_ k e. A ( C x. B ) ) ) |
85 |
|
fz1f1o |
|- ( A e. Fin -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
86 |
1 85
|
syl |
|- ( ph -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
87 |
13 84 86
|
mpjaod |
|- ( ph -> ( C x. sum_ k e. A B ) = sum_ k e. A ( C x. B ) ) |