Description: Closure of a finite sum of nonnegative integers. (Contributed by Mario Carneiro, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumcl.1 | |- ( ph -> A e. Fin ) |
|
| fsumnn0cl.2 | |- ( ( ph /\ k e. A ) -> B e. NN0 ) |
||
| Assertion | fsumnn0cl | |- ( ph -> sum_ k e. A B e. NN0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumcl.1 | |- ( ph -> A e. Fin ) |
|
| 2 | fsumnn0cl.2 | |- ( ( ph /\ k e. A ) -> B e. NN0 ) |
|
| 3 | nn0sscn | |- NN0 C_ CC |
|
| 4 | 3 | a1i | |- ( ph -> NN0 C_ CC ) |
| 5 | nn0addcl | |- ( ( x e. NN0 /\ y e. NN0 ) -> ( x + y ) e. NN0 ) |
|
| 6 | 5 | adantl | |- ( ( ph /\ ( x e. NN0 /\ y e. NN0 ) ) -> ( x + y ) e. NN0 ) |
| 7 | 0nn0 | |- 0 e. NN0 |
|
| 8 | 7 | a1i | |- ( ph -> 0 e. NN0 ) |
| 9 | 4 6 1 2 8 | fsumcllem | |- ( ph -> sum_ k e. A B e. NN0 ) |