Step |
Hyp |
Ref |
Expression |
1 |
|
fsumnncl.an0 |
|- ( ph -> A =/= (/) ) |
2 |
|
fsumnncl.afi |
|- ( ph -> A e. Fin ) |
3 |
|
fsumnncl.b |
|- ( ( ph /\ k e. A ) -> B e. NN ) |
4 |
3
|
nnnn0d |
|- ( ( ph /\ k e. A ) -> B e. NN0 ) |
5 |
2 4
|
fsumnn0cl |
|- ( ph -> sum_ k e. A B e. NN0 ) |
6 |
|
n0 |
|- ( A =/= (/) <-> E. j j e. A ) |
7 |
1 6
|
sylib |
|- ( ph -> E. j j e. A ) |
8 |
|
0red |
|- ( ( ph /\ j e. A ) -> 0 e. RR ) |
9 |
|
nfv |
|- F/ k ( ph /\ j e. A ) |
10 |
|
nfcsb1v |
|- F/_ k [_ j / k ]_ B |
11 |
10
|
nfel1 |
|- F/ k [_ j / k ]_ B e. NN |
12 |
9 11
|
nfim |
|- F/ k ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. NN ) |
13 |
|
eleq1w |
|- ( k = j -> ( k e. A <-> j e. A ) ) |
14 |
13
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. A ) <-> ( ph /\ j e. A ) ) ) |
15 |
|
csbeq1a |
|- ( k = j -> B = [_ j / k ]_ B ) |
16 |
15
|
eleq1d |
|- ( k = j -> ( B e. NN <-> [_ j / k ]_ B e. NN ) ) |
17 |
14 16
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. A ) -> B e. NN ) <-> ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. NN ) ) ) |
18 |
12 17 3
|
chvarfv |
|- ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. NN ) |
19 |
18
|
nnred |
|- ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. RR ) |
20 |
8 19
|
readdcld |
|- ( ( ph /\ j e. A ) -> ( 0 + [_ j / k ]_ B ) e. RR ) |
21 |
|
diffi |
|- ( A e. Fin -> ( A \ { j } ) e. Fin ) |
22 |
2 21
|
syl |
|- ( ph -> ( A \ { j } ) e. Fin ) |
23 |
|
eldifi |
|- ( k e. ( A \ { j } ) -> k e. A ) |
24 |
23
|
adantl |
|- ( ( ph /\ k e. ( A \ { j } ) ) -> k e. A ) |
25 |
24 4
|
syldan |
|- ( ( ph /\ k e. ( A \ { j } ) ) -> B e. NN0 ) |
26 |
22 25
|
fsumnn0cl |
|- ( ph -> sum_ k e. ( A \ { j } ) B e. NN0 ) |
27 |
26
|
nn0red |
|- ( ph -> sum_ k e. ( A \ { j } ) B e. RR ) |
28 |
27
|
adantr |
|- ( ( ph /\ j e. A ) -> sum_ k e. ( A \ { j } ) B e. RR ) |
29 |
28 19
|
readdcld |
|- ( ( ph /\ j e. A ) -> ( sum_ k e. ( A \ { j } ) B + [_ j / k ]_ B ) e. RR ) |
30 |
18
|
nnrpd |
|- ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. RR+ ) |
31 |
8 30
|
ltaddrpd |
|- ( ( ph /\ j e. A ) -> 0 < ( 0 + [_ j / k ]_ B ) ) |
32 |
26
|
nn0ge0d |
|- ( ph -> 0 <_ sum_ k e. ( A \ { j } ) B ) |
33 |
32
|
adantr |
|- ( ( ph /\ j e. A ) -> 0 <_ sum_ k e. ( A \ { j } ) B ) |
34 |
8 28 19 33
|
leadd1dd |
|- ( ( ph /\ j e. A ) -> ( 0 + [_ j / k ]_ B ) <_ ( sum_ k e. ( A \ { j } ) B + [_ j / k ]_ B ) ) |
35 |
8 20 29 31 34
|
ltletrd |
|- ( ( ph /\ j e. A ) -> 0 < ( sum_ k e. ( A \ { j } ) B + [_ j / k ]_ B ) ) |
36 |
|
difsnid |
|- ( j e. A -> ( ( A \ { j } ) u. { j } ) = A ) |
37 |
36
|
adantl |
|- ( ( ph /\ j e. A ) -> ( ( A \ { j } ) u. { j } ) = A ) |
38 |
37
|
eqcomd |
|- ( ( ph /\ j e. A ) -> A = ( ( A \ { j } ) u. { j } ) ) |
39 |
38
|
sumeq1d |
|- ( ( ph /\ j e. A ) -> sum_ k e. A B = sum_ k e. ( ( A \ { j } ) u. { j } ) B ) |
40 |
22
|
adantr |
|- ( ( ph /\ j e. A ) -> ( A \ { j } ) e. Fin ) |
41 |
|
simpr |
|- ( ( ph /\ j e. A ) -> j e. A ) |
42 |
|
neldifsnd |
|- ( ( ph /\ j e. A ) -> -. j e. ( A \ { j } ) ) |
43 |
|
simpl |
|- ( ( ph /\ k e. ( A \ { j } ) ) -> ph ) |
44 |
43 24 3
|
syl2anc |
|- ( ( ph /\ k e. ( A \ { j } ) ) -> B e. NN ) |
45 |
44
|
nncnd |
|- ( ( ph /\ k e. ( A \ { j } ) ) -> B e. CC ) |
46 |
45
|
adantlr |
|- ( ( ( ph /\ j e. A ) /\ k e. ( A \ { j } ) ) -> B e. CC ) |
47 |
|
nnsscn |
|- NN C_ CC |
48 |
47
|
a1i |
|- ( ( ph /\ j e. A ) -> NN C_ CC ) |
49 |
48 18
|
sseldd |
|- ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. CC ) |
50 |
9 10 40 41 42 46 15 49
|
fsumsplitsn |
|- ( ( ph /\ j e. A ) -> sum_ k e. ( ( A \ { j } ) u. { j } ) B = ( sum_ k e. ( A \ { j } ) B + [_ j / k ]_ B ) ) |
51 |
39 50
|
eqtr2d |
|- ( ( ph /\ j e. A ) -> ( sum_ k e. ( A \ { j } ) B + [_ j / k ]_ B ) = sum_ k e. A B ) |
52 |
35 51
|
breqtrd |
|- ( ( ph /\ j e. A ) -> 0 < sum_ k e. A B ) |
53 |
52
|
ex |
|- ( ph -> ( j e. A -> 0 < sum_ k e. A B ) ) |
54 |
53
|
exlimdv |
|- ( ph -> ( E. j j e. A -> 0 < sum_ k e. A B ) ) |
55 |
7 54
|
mpd |
|- ( ph -> 0 < sum_ k e. A B ) |
56 |
5 55
|
jca |
|- ( ph -> ( sum_ k e. A B e. NN0 /\ 0 < sum_ k e. A B ) ) |
57 |
|
elnnnn0b |
|- ( sum_ k e. A B e. NN <-> ( sum_ k e. A B e. NN0 /\ 0 < sum_ k e. A B ) ) |
58 |
56 57
|
sylibr |
|- ( ph -> sum_ k e. A B e. NN ) |