Step |
Hyp |
Ref |
Expression |
1 |
|
fsumparts.b |
|- ( k = j -> ( A = B /\ V = W ) ) |
2 |
|
fsumparts.c |
|- ( k = ( j + 1 ) -> ( A = C /\ V = X ) ) |
3 |
|
fsumparts.d |
|- ( k = M -> ( A = D /\ V = Y ) ) |
4 |
|
fsumparts.e |
|- ( k = N -> ( A = E /\ V = Z ) ) |
5 |
|
fsumparts.1 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
6 |
|
fsumparts.2 |
|- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
7 |
|
fsumparts.3 |
|- ( ( ph /\ k e. ( M ... N ) ) -> V e. CC ) |
8 |
|
sum0 |
|- sum_ j e. (/) ( B x. ( X - W ) ) = 0 |
9 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
10 |
8 9
|
eqtr4i |
|- sum_ j e. (/) ( B x. ( X - W ) ) = ( 0 - 0 ) |
11 |
|
simpr |
|- ( ( ph /\ N = M ) -> N = M ) |
12 |
11
|
oveq2d |
|- ( ( ph /\ N = M ) -> ( M ..^ N ) = ( M ..^ M ) ) |
13 |
|
fzo0 |
|- ( M ..^ M ) = (/) |
14 |
12 13
|
eqtrdi |
|- ( ( ph /\ N = M ) -> ( M ..^ N ) = (/) ) |
15 |
14
|
sumeq1d |
|- ( ( ph /\ N = M ) -> sum_ j e. ( M ..^ N ) ( B x. ( X - W ) ) = sum_ j e. (/) ( B x. ( X - W ) ) ) |
16 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
17 |
5 16
|
syl |
|- ( ph -> M e. ( M ... N ) ) |
18 |
|
eqtr3 |
|- ( ( k = M /\ N = M ) -> k = N ) |
19 |
|
oveq12 |
|- ( ( A = E /\ V = Z ) -> ( A x. V ) = ( E x. Z ) ) |
20 |
18 4 19
|
3syl |
|- ( ( k = M /\ N = M ) -> ( A x. V ) = ( E x. Z ) ) |
21 |
|
oveq12 |
|- ( ( A = D /\ V = Y ) -> ( A x. V ) = ( D x. Y ) ) |
22 |
3 21
|
syl |
|- ( k = M -> ( A x. V ) = ( D x. Y ) ) |
23 |
22
|
adantr |
|- ( ( k = M /\ N = M ) -> ( A x. V ) = ( D x. Y ) ) |
24 |
20 23
|
eqeq12d |
|- ( ( k = M /\ N = M ) -> ( ( A x. V ) = ( A x. V ) <-> ( E x. Z ) = ( D x. Y ) ) ) |
25 |
24
|
pm5.74da |
|- ( k = M -> ( ( N = M -> ( A x. V ) = ( A x. V ) ) <-> ( N = M -> ( E x. Z ) = ( D x. Y ) ) ) ) |
26 |
|
eqidd |
|- ( N = M -> ( A x. V ) = ( A x. V ) ) |
27 |
25 26
|
vtoclg |
|- ( M e. ( M ... N ) -> ( N = M -> ( E x. Z ) = ( D x. Y ) ) ) |
28 |
27
|
imp |
|- ( ( M e. ( M ... N ) /\ N = M ) -> ( E x. Z ) = ( D x. Y ) ) |
29 |
17 28
|
sylan |
|- ( ( ph /\ N = M ) -> ( E x. Z ) = ( D x. Y ) ) |
30 |
29
|
oveq1d |
|- ( ( ph /\ N = M ) -> ( ( E x. Z ) - ( D x. Y ) ) = ( ( D x. Y ) - ( D x. Y ) ) ) |
31 |
3
|
simpld |
|- ( k = M -> A = D ) |
32 |
31
|
eleq1d |
|- ( k = M -> ( A e. CC <-> D e. CC ) ) |
33 |
6
|
ralrimiva |
|- ( ph -> A. k e. ( M ... N ) A e. CC ) |
34 |
32 33 17
|
rspcdva |
|- ( ph -> D e. CC ) |
35 |
3
|
simprd |
|- ( k = M -> V = Y ) |
36 |
35
|
eleq1d |
|- ( k = M -> ( V e. CC <-> Y e. CC ) ) |
37 |
7
|
ralrimiva |
|- ( ph -> A. k e. ( M ... N ) V e. CC ) |
38 |
36 37 17
|
rspcdva |
|- ( ph -> Y e. CC ) |
39 |
34 38
|
mulcld |
|- ( ph -> ( D x. Y ) e. CC ) |
40 |
39
|
subidd |
|- ( ph -> ( ( D x. Y ) - ( D x. Y ) ) = 0 ) |
41 |
40
|
adantr |
|- ( ( ph /\ N = M ) -> ( ( D x. Y ) - ( D x. Y ) ) = 0 ) |
42 |
30 41
|
eqtrd |
|- ( ( ph /\ N = M ) -> ( ( E x. Z ) - ( D x. Y ) ) = 0 ) |
43 |
14
|
sumeq1d |
|- ( ( ph /\ N = M ) -> sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) = sum_ j e. (/) ( ( C - B ) x. X ) ) |
44 |
|
sum0 |
|- sum_ j e. (/) ( ( C - B ) x. X ) = 0 |
45 |
43 44
|
eqtrdi |
|- ( ( ph /\ N = M ) -> sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) = 0 ) |
46 |
42 45
|
oveq12d |
|- ( ( ph /\ N = M ) -> ( ( ( E x. Z ) - ( D x. Y ) ) - sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) ) = ( 0 - 0 ) ) |
47 |
10 15 46
|
3eqtr4a |
|- ( ( ph /\ N = M ) -> sum_ j e. ( M ..^ N ) ( B x. ( X - W ) ) = ( ( ( E x. Z ) - ( D x. Y ) ) - sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) ) ) |
48 |
|
fzofi |
|- ( ( M + 1 ) ..^ N ) e. Fin |
49 |
48
|
a1i |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( M + 1 ) ..^ N ) e. Fin ) |
50 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
51 |
5 50
|
syl |
|- ( ph -> M e. ZZ ) |
52 |
51
|
adantr |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> M e. ZZ ) |
53 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
54 |
|
peano2uz |
|- ( M e. ( ZZ>= ` M ) -> ( M + 1 ) e. ( ZZ>= ` M ) ) |
55 |
|
fzoss1 |
|- ( ( M + 1 ) e. ( ZZ>= ` M ) -> ( ( M + 1 ) ..^ N ) C_ ( M ..^ N ) ) |
56 |
52 53 54 55
|
4syl |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( M + 1 ) ..^ N ) C_ ( M ..^ N ) ) |
57 |
56
|
sselda |
|- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( ( M + 1 ) ..^ N ) ) -> k e. ( M ..^ N ) ) |
58 |
|
elfzofz |
|- ( k e. ( M ..^ N ) -> k e. ( M ... N ) ) |
59 |
6 7
|
mulcld |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( A x. V ) e. CC ) |
60 |
58 59
|
sylan2 |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( A x. V ) e. CC ) |
61 |
60
|
adantlr |
|- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ..^ N ) ) -> ( A x. V ) e. CC ) |
62 |
57 61
|
syldan |
|- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( ( M + 1 ) ..^ N ) ) -> ( A x. V ) e. CC ) |
63 |
49 62
|
fsumcl |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) e. CC ) |
64 |
4
|
simpld |
|- ( k = N -> A = E ) |
65 |
64
|
eleq1d |
|- ( k = N -> ( A e. CC <-> E e. CC ) ) |
66 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
67 |
5 66
|
syl |
|- ( ph -> N e. ( M ... N ) ) |
68 |
65 33 67
|
rspcdva |
|- ( ph -> E e. CC ) |
69 |
4
|
simprd |
|- ( k = N -> V = Z ) |
70 |
69
|
eleq1d |
|- ( k = N -> ( V e. CC <-> Z e. CC ) ) |
71 |
70 37 67
|
rspcdva |
|- ( ph -> Z e. CC ) |
72 |
68 71
|
mulcld |
|- ( ph -> ( E x. Z ) e. CC ) |
73 |
72
|
adantr |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( E x. Z ) e. CC ) |
74 |
|
simpr |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> N e. ( ZZ>= ` ( M + 1 ) ) ) |
75 |
|
fzp1ss |
|- ( M e. ZZ -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
76 |
52 75
|
syl |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
77 |
76
|
sselda |
|- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( ( M + 1 ) ... N ) ) -> k e. ( M ... N ) ) |
78 |
59
|
adantlr |
|- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ... N ) ) -> ( A x. V ) e. CC ) |
79 |
77 78
|
syldan |
|- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( ( M + 1 ) ... N ) ) -> ( A x. V ) e. CC ) |
80 |
4 19
|
syl |
|- ( k = N -> ( A x. V ) = ( E x. Z ) ) |
81 |
74 79 80
|
fsumm1 |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( ( M + 1 ) ... N ) ( A x. V ) = ( sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) ( A x. V ) + ( E x. Z ) ) ) |
82 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
83 |
5 82
|
syl |
|- ( ph -> N e. ZZ ) |
84 |
83
|
adantr |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> N e. ZZ ) |
85 |
|
fzoval |
|- ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
86 |
84 85
|
syl |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
87 |
52
|
zcnd |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> M e. CC ) |
88 |
|
ax-1cn |
|- 1 e. CC |
89 |
|
pncan |
|- ( ( M e. CC /\ 1 e. CC ) -> ( ( M + 1 ) - 1 ) = M ) |
90 |
87 88 89
|
sylancl |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( M + 1 ) - 1 ) = M ) |
91 |
90
|
oveq1d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( ( M + 1 ) - 1 ) ... ( N - 1 ) ) = ( M ... ( N - 1 ) ) ) |
92 |
86 91
|
eqtr4d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( M ..^ N ) = ( ( ( M + 1 ) - 1 ) ... ( N - 1 ) ) ) |
93 |
92
|
sumeq1d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( C x. X ) = sum_ j e. ( ( ( M + 1 ) - 1 ) ... ( N - 1 ) ) ( C x. X ) ) |
94 |
|
1zzd |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> 1 e. ZZ ) |
95 |
52
|
peano2zd |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( M + 1 ) e. ZZ ) |
96 |
|
oveq12 |
|- ( ( A = C /\ V = X ) -> ( A x. V ) = ( C x. X ) ) |
97 |
2 96
|
syl |
|- ( k = ( j + 1 ) -> ( A x. V ) = ( C x. X ) ) |
98 |
94 95 84 79 97
|
fsumshftm |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( ( M + 1 ) ... N ) ( A x. V ) = sum_ j e. ( ( ( M + 1 ) - 1 ) ... ( N - 1 ) ) ( C x. X ) ) |
99 |
93 98
|
eqtr4d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( C x. X ) = sum_ k e. ( ( M + 1 ) ... N ) ( A x. V ) ) |
100 |
|
fzoval |
|- ( N e. ZZ -> ( ( M + 1 ) ..^ N ) = ( ( M + 1 ) ... ( N - 1 ) ) ) |
101 |
84 100
|
syl |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( M + 1 ) ..^ N ) = ( ( M + 1 ) ... ( N - 1 ) ) ) |
102 |
101
|
sumeq1d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) = sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) ( A x. V ) ) |
103 |
102
|
oveq1d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) + ( E x. Z ) ) = ( sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) ( A x. V ) + ( E x. Z ) ) ) |
104 |
81 99 103
|
3eqtr4d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( C x. X ) = ( sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) + ( E x. Z ) ) ) |
105 |
63 73 104
|
comraddd |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( C x. X ) = ( ( E x. Z ) + sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) ) |
106 |
105
|
oveq1d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ j e. ( M ..^ N ) ( C x. X ) - sum_ j e. ( M ..^ N ) ( B x. X ) ) = ( ( ( E x. Z ) + sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) - sum_ j e. ( M ..^ N ) ( B x. X ) ) ) |
107 |
|
fzofzp1 |
|- ( j e. ( M ..^ N ) -> ( j + 1 ) e. ( M ... N ) ) |
108 |
2
|
simpld |
|- ( k = ( j + 1 ) -> A = C ) |
109 |
108
|
eleq1d |
|- ( k = ( j + 1 ) -> ( A e. CC <-> C e. CC ) ) |
110 |
109
|
rspccva |
|- ( ( A. k e. ( M ... N ) A e. CC /\ ( j + 1 ) e. ( M ... N ) ) -> C e. CC ) |
111 |
33 107 110
|
syl2an |
|- ( ( ph /\ j e. ( M ..^ N ) ) -> C e. CC ) |
112 |
|
elfzofz |
|- ( j e. ( M ..^ N ) -> j e. ( M ... N ) ) |
113 |
1
|
simpld |
|- ( k = j -> A = B ) |
114 |
113
|
eleq1d |
|- ( k = j -> ( A e. CC <-> B e. CC ) ) |
115 |
114
|
rspccva |
|- ( ( A. k e. ( M ... N ) A e. CC /\ j e. ( M ... N ) ) -> B e. CC ) |
116 |
33 112 115
|
syl2an |
|- ( ( ph /\ j e. ( M ..^ N ) ) -> B e. CC ) |
117 |
2
|
simprd |
|- ( k = ( j + 1 ) -> V = X ) |
118 |
117
|
eleq1d |
|- ( k = ( j + 1 ) -> ( V e. CC <-> X e. CC ) ) |
119 |
118
|
rspccva |
|- ( ( A. k e. ( M ... N ) V e. CC /\ ( j + 1 ) e. ( M ... N ) ) -> X e. CC ) |
120 |
37 107 119
|
syl2an |
|- ( ( ph /\ j e. ( M ..^ N ) ) -> X e. CC ) |
121 |
111 116 120
|
subdird |
|- ( ( ph /\ j e. ( M ..^ N ) ) -> ( ( C - B ) x. X ) = ( ( C x. X ) - ( B x. X ) ) ) |
122 |
121
|
sumeq2dv |
|- ( ph -> sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) = sum_ j e. ( M ..^ N ) ( ( C x. X ) - ( B x. X ) ) ) |
123 |
|
fzofi |
|- ( M ..^ N ) e. Fin |
124 |
123
|
a1i |
|- ( ph -> ( M ..^ N ) e. Fin ) |
125 |
111 120
|
mulcld |
|- ( ( ph /\ j e. ( M ..^ N ) ) -> ( C x. X ) e. CC ) |
126 |
116 120
|
mulcld |
|- ( ( ph /\ j e. ( M ..^ N ) ) -> ( B x. X ) e. CC ) |
127 |
124 125 126
|
fsumsub |
|- ( ph -> sum_ j e. ( M ..^ N ) ( ( C x. X ) - ( B x. X ) ) = ( sum_ j e. ( M ..^ N ) ( C x. X ) - sum_ j e. ( M ..^ N ) ( B x. X ) ) ) |
128 |
122 127
|
eqtrd |
|- ( ph -> sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) = ( sum_ j e. ( M ..^ N ) ( C x. X ) - sum_ j e. ( M ..^ N ) ( B x. X ) ) ) |
129 |
128
|
adantr |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) = ( sum_ j e. ( M ..^ N ) ( C x. X ) - sum_ j e. ( M ..^ N ) ( B x. X ) ) ) |
130 |
124 126
|
fsumcl |
|- ( ph -> sum_ j e. ( M ..^ N ) ( B x. X ) e. CC ) |
131 |
130
|
adantr |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( B x. X ) e. CC ) |
132 |
73 131 63
|
subsub3d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( E x. Z ) - ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) ) = ( ( ( E x. Z ) + sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) - sum_ j e. ( M ..^ N ) ( B x. X ) ) ) |
133 |
106 129 132
|
3eqtr4d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) = ( ( E x. Z ) - ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) ) ) |
134 |
133
|
oveq2d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( ( E x. Z ) - ( D x. Y ) ) - sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) ) = ( ( ( E x. Z ) - ( D x. Y ) ) - ( ( E x. Z ) - ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) ) ) ) |
135 |
39
|
adantr |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( D x. Y ) e. CC ) |
136 |
131 63
|
subcld |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) e. CC ) |
137 |
73 135 136
|
nnncan1d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( ( E x. Z ) - ( D x. Y ) ) - ( ( E x. Z ) - ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) ) ) = ( ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) - ( D x. Y ) ) ) |
138 |
63 135
|
addcomd |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) + ( D x. Y ) ) = ( ( D x. Y ) + sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) ) |
139 |
|
eluzp1m1 |
|- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
140 |
51 139
|
sylan |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
141 |
86
|
eleq2d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( k e. ( M ..^ N ) <-> k e. ( M ... ( N - 1 ) ) ) ) |
142 |
141
|
biimpar |
|- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ... ( N - 1 ) ) ) -> k e. ( M ..^ N ) ) |
143 |
142 61
|
syldan |
|- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ... ( N - 1 ) ) ) -> ( A x. V ) e. CC ) |
144 |
140 143 22
|
fsum1p |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( M ... ( N - 1 ) ) ( A x. V ) = ( ( D x. Y ) + sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) ( A x. V ) ) ) |
145 |
86
|
sumeq1d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( M ..^ N ) ( A x. V ) = sum_ k e. ( M ... ( N - 1 ) ) ( A x. V ) ) |
146 |
102
|
oveq2d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( D x. Y ) + sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) = ( ( D x. Y ) + sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) ( A x. V ) ) ) |
147 |
144 145 146
|
3eqtr4d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( M ..^ N ) ( A x. V ) = ( ( D x. Y ) + sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) ) |
148 |
138 147
|
eqtr4d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) + ( D x. Y ) ) = sum_ k e. ( M ..^ N ) ( A x. V ) ) |
149 |
|
oveq12 |
|- ( ( A = B /\ V = W ) -> ( A x. V ) = ( B x. W ) ) |
150 |
1 149
|
syl |
|- ( k = j -> ( A x. V ) = ( B x. W ) ) |
151 |
150
|
cbvsumv |
|- sum_ k e. ( M ..^ N ) ( A x. V ) = sum_ j e. ( M ..^ N ) ( B x. W ) |
152 |
148 151
|
eqtrdi |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) + ( D x. Y ) ) = sum_ j e. ( M ..^ N ) ( B x. W ) ) |
153 |
152
|
oveq2d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ j e. ( M ..^ N ) ( B x. X ) - ( sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) + ( D x. Y ) ) ) = ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ j e. ( M ..^ N ) ( B x. W ) ) ) |
154 |
131 63 135
|
subsub4d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) - ( D x. Y ) ) = ( sum_ j e. ( M ..^ N ) ( B x. X ) - ( sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) + ( D x. Y ) ) ) ) |
155 |
1
|
simprd |
|- ( k = j -> V = W ) |
156 |
155
|
eleq1d |
|- ( k = j -> ( V e. CC <-> W e. CC ) ) |
157 |
156
|
rspccva |
|- ( ( A. k e. ( M ... N ) V e. CC /\ j e. ( M ... N ) ) -> W e. CC ) |
158 |
37 112 157
|
syl2an |
|- ( ( ph /\ j e. ( M ..^ N ) ) -> W e. CC ) |
159 |
116 120 158
|
subdid |
|- ( ( ph /\ j e. ( M ..^ N ) ) -> ( B x. ( X - W ) ) = ( ( B x. X ) - ( B x. W ) ) ) |
160 |
159
|
sumeq2dv |
|- ( ph -> sum_ j e. ( M ..^ N ) ( B x. ( X - W ) ) = sum_ j e. ( M ..^ N ) ( ( B x. X ) - ( B x. W ) ) ) |
161 |
116 158
|
mulcld |
|- ( ( ph /\ j e. ( M ..^ N ) ) -> ( B x. W ) e. CC ) |
162 |
124 126 161
|
fsumsub |
|- ( ph -> sum_ j e. ( M ..^ N ) ( ( B x. X ) - ( B x. W ) ) = ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ j e. ( M ..^ N ) ( B x. W ) ) ) |
163 |
160 162
|
eqtrd |
|- ( ph -> sum_ j e. ( M ..^ N ) ( B x. ( X - W ) ) = ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ j e. ( M ..^ N ) ( B x. W ) ) ) |
164 |
163
|
adantr |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( B x. ( X - W ) ) = ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ j e. ( M ..^ N ) ( B x. W ) ) ) |
165 |
153 154 164
|
3eqtr4d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) - ( D x. Y ) ) = sum_ j e. ( M ..^ N ) ( B x. ( X - W ) ) ) |
166 |
134 137 165
|
3eqtrrd |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( B x. ( X - W ) ) = ( ( ( E x. Z ) - ( D x. Y ) ) - sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) ) ) |
167 |
|
uzp1 |
|- ( N e. ( ZZ>= ` M ) -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
168 |
5 167
|
syl |
|- ( ph -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
169 |
47 166 168
|
mpjaodan |
|- ( ph -> sum_ j e. ( M ..^ N ) ( B x. ( X - W ) ) = ( ( ( E x. Z ) - ( D x. Y ) ) - sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) ) ) |