Metamath Proof Explorer


Theorem fsumre

Description: The real part of a sum. (Contributed by Paul Chapman, 9-Nov-2007) (Revised by Mario Carneiro, 25-Jul-2014)

Ref Expression
Hypotheses fsumre.1
|- ( ph -> A e. Fin )
fsumre.2
|- ( ( ph /\ k e. A ) -> B e. CC )
Assertion fsumre
|- ( ph -> ( Re ` sum_ k e. A B ) = sum_ k e. A ( Re ` B ) )

Proof

Step Hyp Ref Expression
1 fsumre.1
 |-  ( ph -> A e. Fin )
2 fsumre.2
 |-  ( ( ph /\ k e. A ) -> B e. CC )
3 ref
 |-  Re : CC --> RR
4 ax-resscn
 |-  RR C_ CC
5 fss
 |-  ( ( Re : CC --> RR /\ RR C_ CC ) -> Re : CC --> CC )
6 3 4 5 mp2an
 |-  Re : CC --> CC
7 readd
 |-  ( ( x e. CC /\ y e. CC ) -> ( Re ` ( x + y ) ) = ( ( Re ` x ) + ( Re ` y ) ) )
8 1 2 6 7 fsumrelem
 |-  ( ph -> ( Re ` sum_ k e. A B ) = sum_ k e. A ( Re ` B ) )