Step |
Hyp |
Ref |
Expression |
1 |
|
fsumreclf.k |
|- F/ k ph |
2 |
|
fsumreclf.a |
|- ( ph -> A e. Fin ) |
3 |
|
fsumreclf.b |
|- ( ( ph /\ k e. A ) -> B e. RR ) |
4 |
|
csbeq1a |
|- ( k = j -> B = [_ j / k ]_ B ) |
5 |
|
nfcv |
|- F/_ j A |
6 |
|
nfcv |
|- F/_ k A |
7 |
|
nfcv |
|- F/_ j B |
8 |
|
nfcsb1v |
|- F/_ k [_ j / k ]_ B |
9 |
4 5 6 7 8
|
cbvsum |
|- sum_ k e. A B = sum_ j e. A [_ j / k ]_ B |
10 |
9
|
a1i |
|- ( ph -> sum_ k e. A B = sum_ j e. A [_ j / k ]_ B ) |
11 |
|
nfv |
|- F/ k j e. A |
12 |
1 11
|
nfan |
|- F/ k ( ph /\ j e. A ) |
13 |
8
|
nfel1 |
|- F/ k [_ j / k ]_ B e. RR |
14 |
12 13
|
nfim |
|- F/ k ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. RR ) |
15 |
|
eleq1w |
|- ( k = j -> ( k e. A <-> j e. A ) ) |
16 |
15
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. A ) <-> ( ph /\ j e. A ) ) ) |
17 |
4
|
eleq1d |
|- ( k = j -> ( B e. RR <-> [_ j / k ]_ B e. RR ) ) |
18 |
16 17
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. A ) -> B e. RR ) <-> ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. RR ) ) ) |
19 |
14 18 3
|
chvarfv |
|- ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. RR ) |
20 |
2 19
|
fsumrecl |
|- ( ph -> sum_ j e. A [_ j / k ]_ B e. RR ) |
21 |
10 20
|
eqeltrd |
|- ( ph -> sum_ k e. A B e. RR ) |