Metamath Proof Explorer


Theorem fsumreclf

Description: Closure of a finite sum of reals. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses fsumreclf.k
|- F/ k ph
fsumreclf.a
|- ( ph -> A e. Fin )
fsumreclf.b
|- ( ( ph /\ k e. A ) -> B e. RR )
Assertion fsumreclf
|- ( ph -> sum_ k e. A B e. RR )

Proof

Step Hyp Ref Expression
1 fsumreclf.k
 |-  F/ k ph
2 fsumreclf.a
 |-  ( ph -> A e. Fin )
3 fsumreclf.b
 |-  ( ( ph /\ k e. A ) -> B e. RR )
4 csbeq1a
 |-  ( k = j -> B = [_ j / k ]_ B )
5 nfcv
 |-  F/_ j A
6 nfcv
 |-  F/_ k A
7 nfcv
 |-  F/_ j B
8 nfcsb1v
 |-  F/_ k [_ j / k ]_ B
9 4 5 6 7 8 cbvsum
 |-  sum_ k e. A B = sum_ j e. A [_ j / k ]_ B
10 9 a1i
 |-  ( ph -> sum_ k e. A B = sum_ j e. A [_ j / k ]_ B )
11 nfv
 |-  F/ k j e. A
12 1 11 nfan
 |-  F/ k ( ph /\ j e. A )
13 8 nfel1
 |-  F/ k [_ j / k ]_ B e. RR
14 12 13 nfim
 |-  F/ k ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. RR )
15 eleq1w
 |-  ( k = j -> ( k e. A <-> j e. A ) )
16 15 anbi2d
 |-  ( k = j -> ( ( ph /\ k e. A ) <-> ( ph /\ j e. A ) ) )
17 4 eleq1d
 |-  ( k = j -> ( B e. RR <-> [_ j / k ]_ B e. RR ) )
18 16 17 imbi12d
 |-  ( k = j -> ( ( ( ph /\ k e. A ) -> B e. RR ) <-> ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. RR ) ) )
19 14 18 3 chvarfv
 |-  ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. RR )
20 2 19 fsumrecl
 |-  ( ph -> sum_ j e. A [_ j / k ]_ B e. RR )
21 10 20 eqeltrd
 |-  ( ph -> sum_ k e. A B e. RR )