Step |
Hyp |
Ref |
Expression |
1 |
|
fsumre.1 |
|- ( ph -> A e. Fin ) |
2 |
|
fsumre.2 |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
3 |
|
fsumrelem.3 |
|- F : CC --> CC |
4 |
|
fsumrelem.4 |
|- ( ( x e. CC /\ y e. CC ) -> ( F ` ( x + y ) ) = ( ( F ` x ) + ( F ` y ) ) ) |
5 |
|
0cn |
|- 0 e. CC |
6 |
3
|
ffvelrni |
|- ( 0 e. CC -> ( F ` 0 ) e. CC ) |
7 |
5 6
|
ax-mp |
|- ( F ` 0 ) e. CC |
8 |
7
|
addid1i |
|- ( ( F ` 0 ) + 0 ) = ( F ` 0 ) |
9 |
|
fvoveq1 |
|- ( x = 0 -> ( F ` ( x + y ) ) = ( F ` ( 0 + y ) ) ) |
10 |
|
fveq2 |
|- ( x = 0 -> ( F ` x ) = ( F ` 0 ) ) |
11 |
10
|
oveq1d |
|- ( x = 0 -> ( ( F ` x ) + ( F ` y ) ) = ( ( F ` 0 ) + ( F ` y ) ) ) |
12 |
9 11
|
eqeq12d |
|- ( x = 0 -> ( ( F ` ( x + y ) ) = ( ( F ` x ) + ( F ` y ) ) <-> ( F ` ( 0 + y ) ) = ( ( F ` 0 ) + ( F ` y ) ) ) ) |
13 |
|
oveq2 |
|- ( y = 0 -> ( 0 + y ) = ( 0 + 0 ) ) |
14 |
|
00id |
|- ( 0 + 0 ) = 0 |
15 |
13 14
|
eqtrdi |
|- ( y = 0 -> ( 0 + y ) = 0 ) |
16 |
15
|
fveq2d |
|- ( y = 0 -> ( F ` ( 0 + y ) ) = ( F ` 0 ) ) |
17 |
|
fveq2 |
|- ( y = 0 -> ( F ` y ) = ( F ` 0 ) ) |
18 |
17
|
oveq2d |
|- ( y = 0 -> ( ( F ` 0 ) + ( F ` y ) ) = ( ( F ` 0 ) + ( F ` 0 ) ) ) |
19 |
16 18
|
eqeq12d |
|- ( y = 0 -> ( ( F ` ( 0 + y ) ) = ( ( F ` 0 ) + ( F ` y ) ) <-> ( F ` 0 ) = ( ( F ` 0 ) + ( F ` 0 ) ) ) ) |
20 |
12 19 4
|
vtocl2ga |
|- ( ( 0 e. CC /\ 0 e. CC ) -> ( F ` 0 ) = ( ( F ` 0 ) + ( F ` 0 ) ) ) |
21 |
5 5 20
|
mp2an |
|- ( F ` 0 ) = ( ( F ` 0 ) + ( F ` 0 ) ) |
22 |
8 21
|
eqtr2i |
|- ( ( F ` 0 ) + ( F ` 0 ) ) = ( ( F ` 0 ) + 0 ) |
23 |
7 7 5
|
addcani |
|- ( ( ( F ` 0 ) + ( F ` 0 ) ) = ( ( F ` 0 ) + 0 ) <-> ( F ` 0 ) = 0 ) |
24 |
22 23
|
mpbi |
|- ( F ` 0 ) = 0 |
25 |
|
sumeq1 |
|- ( A = (/) -> sum_ k e. A B = sum_ k e. (/) B ) |
26 |
|
sum0 |
|- sum_ k e. (/) B = 0 |
27 |
25 26
|
eqtrdi |
|- ( A = (/) -> sum_ k e. A B = 0 ) |
28 |
27
|
fveq2d |
|- ( A = (/) -> ( F ` sum_ k e. A B ) = ( F ` 0 ) ) |
29 |
|
sumeq1 |
|- ( A = (/) -> sum_ k e. A ( F ` B ) = sum_ k e. (/) ( F ` B ) ) |
30 |
|
sum0 |
|- sum_ k e. (/) ( F ` B ) = 0 |
31 |
29 30
|
eqtrdi |
|- ( A = (/) -> sum_ k e. A ( F ` B ) = 0 ) |
32 |
24 28 31
|
3eqtr4a |
|- ( A = (/) -> ( F ` sum_ k e. A B ) = sum_ k e. A ( F ` B ) ) |
33 |
32
|
a1i |
|- ( ph -> ( A = (/) -> ( F ` sum_ k e. A B ) = sum_ k e. A ( F ` B ) ) ) |
34 |
|
addcl |
|- ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) |
35 |
34
|
adantl |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ ( x e. CC /\ y e. CC ) ) -> ( x + y ) e. CC ) |
36 |
2
|
fmpttd |
|- ( ph -> ( k e. A |-> B ) : A --> CC ) |
37 |
36
|
adantr |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( k e. A |-> B ) : A --> CC ) |
38 |
|
simprr |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
39 |
|
f1of |
|- ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> f : ( 1 ... ( # ` A ) ) --> A ) |
40 |
38 39
|
syl |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) --> A ) |
41 |
|
fco |
|- ( ( ( k e. A |-> B ) : A --> CC /\ f : ( 1 ... ( # ` A ) ) --> A ) -> ( ( k e. A |-> B ) o. f ) : ( 1 ... ( # ` A ) ) --> CC ) |
42 |
37 40 41
|
syl2anc |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( ( k e. A |-> B ) o. f ) : ( 1 ... ( # ` A ) ) --> CC ) |
43 |
42
|
ffvelrnda |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ x e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` x ) e. CC ) |
44 |
|
simprl |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( # ` A ) e. NN ) |
45 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
46 |
44 45
|
eleqtrdi |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( # ` A ) e. ( ZZ>= ` 1 ) ) |
47 |
4
|
adantl |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ ( x e. CC /\ y e. CC ) ) -> ( F ` ( x + y ) ) = ( ( F ` x ) + ( F ` y ) ) ) |
48 |
40
|
ffvelrnda |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ x e. ( 1 ... ( # ` A ) ) ) -> ( f ` x ) e. A ) |
49 |
|
simpr |
|- ( ( ph /\ k e. A ) -> k e. A ) |
50 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
51 |
50
|
fvmpt2 |
|- ( ( k e. A /\ B e. CC ) -> ( ( k e. A |-> B ) ` k ) = B ) |
52 |
49 2 51
|
syl2anc |
|- ( ( ph /\ k e. A ) -> ( ( k e. A |-> B ) ` k ) = B ) |
53 |
52
|
fveq2d |
|- ( ( ph /\ k e. A ) -> ( F ` ( ( k e. A |-> B ) ` k ) ) = ( F ` B ) ) |
54 |
|
fvex |
|- ( F ` B ) e. _V |
55 |
|
eqid |
|- ( k e. A |-> ( F ` B ) ) = ( k e. A |-> ( F ` B ) ) |
56 |
55
|
fvmpt2 |
|- ( ( k e. A /\ ( F ` B ) e. _V ) -> ( ( k e. A |-> ( F ` B ) ) ` k ) = ( F ` B ) ) |
57 |
49 54 56
|
sylancl |
|- ( ( ph /\ k e. A ) -> ( ( k e. A |-> ( F ` B ) ) ` k ) = ( F ` B ) ) |
58 |
53 57
|
eqtr4d |
|- ( ( ph /\ k e. A ) -> ( F ` ( ( k e. A |-> B ) ` k ) ) = ( ( k e. A |-> ( F ` B ) ) ` k ) ) |
59 |
58
|
ralrimiva |
|- ( ph -> A. k e. A ( F ` ( ( k e. A |-> B ) ` k ) ) = ( ( k e. A |-> ( F ` B ) ) ` k ) ) |
60 |
59
|
ad2antrr |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ x e. ( 1 ... ( # ` A ) ) ) -> A. k e. A ( F ` ( ( k e. A |-> B ) ` k ) ) = ( ( k e. A |-> ( F ` B ) ) ` k ) ) |
61 |
|
nfcv |
|- F/_ k F |
62 |
|
nffvmpt1 |
|- F/_ k ( ( k e. A |-> B ) ` ( f ` x ) ) |
63 |
61 62
|
nffv |
|- F/_ k ( F ` ( ( k e. A |-> B ) ` ( f ` x ) ) ) |
64 |
|
nffvmpt1 |
|- F/_ k ( ( k e. A |-> ( F ` B ) ) ` ( f ` x ) ) |
65 |
63 64
|
nfeq |
|- F/ k ( F ` ( ( k e. A |-> B ) ` ( f ` x ) ) ) = ( ( k e. A |-> ( F ` B ) ) ` ( f ` x ) ) |
66 |
|
2fveq3 |
|- ( k = ( f ` x ) -> ( F ` ( ( k e. A |-> B ) ` k ) ) = ( F ` ( ( k e. A |-> B ) ` ( f ` x ) ) ) ) |
67 |
|
fveq2 |
|- ( k = ( f ` x ) -> ( ( k e. A |-> ( F ` B ) ) ` k ) = ( ( k e. A |-> ( F ` B ) ) ` ( f ` x ) ) ) |
68 |
66 67
|
eqeq12d |
|- ( k = ( f ` x ) -> ( ( F ` ( ( k e. A |-> B ) ` k ) ) = ( ( k e. A |-> ( F ` B ) ) ` k ) <-> ( F ` ( ( k e. A |-> B ) ` ( f ` x ) ) ) = ( ( k e. A |-> ( F ` B ) ) ` ( f ` x ) ) ) ) |
69 |
65 68
|
rspc |
|- ( ( f ` x ) e. A -> ( A. k e. A ( F ` ( ( k e. A |-> B ) ` k ) ) = ( ( k e. A |-> ( F ` B ) ) ` k ) -> ( F ` ( ( k e. A |-> B ) ` ( f ` x ) ) ) = ( ( k e. A |-> ( F ` B ) ) ` ( f ` x ) ) ) ) |
70 |
48 60 69
|
sylc |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ x e. ( 1 ... ( # ` A ) ) ) -> ( F ` ( ( k e. A |-> B ) ` ( f ` x ) ) ) = ( ( k e. A |-> ( F ` B ) ) ` ( f ` x ) ) ) |
71 |
|
fvco3 |
|- ( ( f : ( 1 ... ( # ` A ) ) --> A /\ x e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` x ) = ( ( k e. A |-> B ) ` ( f ` x ) ) ) |
72 |
40 71
|
sylan |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ x e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` x ) = ( ( k e. A |-> B ) ` ( f ` x ) ) ) |
73 |
72
|
fveq2d |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ x e. ( 1 ... ( # ` A ) ) ) -> ( F ` ( ( ( k e. A |-> B ) o. f ) ` x ) ) = ( F ` ( ( k e. A |-> B ) ` ( f ` x ) ) ) ) |
74 |
|
fvco3 |
|- ( ( f : ( 1 ... ( # ` A ) ) --> A /\ x e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> ( F ` B ) ) o. f ) ` x ) = ( ( k e. A |-> ( F ` B ) ) ` ( f ` x ) ) ) |
75 |
40 74
|
sylan |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ x e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> ( F ` B ) ) o. f ) ` x ) = ( ( k e. A |-> ( F ` B ) ) ` ( f ` x ) ) ) |
76 |
70 73 75
|
3eqtr4d |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ x e. ( 1 ... ( # ` A ) ) ) -> ( F ` ( ( ( k e. A |-> B ) o. f ) ` x ) ) = ( ( ( k e. A |-> ( F ` B ) ) o. f ) ` x ) ) |
77 |
35 43 46 47 76
|
seqhomo |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( F ` ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) = ( seq 1 ( + , ( ( k e. A |-> ( F ` B ) ) o. f ) ) ` ( # ` A ) ) ) |
78 |
|
fveq2 |
|- ( m = ( f ` x ) -> ( ( k e. A |-> B ) ` m ) = ( ( k e. A |-> B ) ` ( f ` x ) ) ) |
79 |
37
|
ffvelrnda |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. A ) -> ( ( k e. A |-> B ) ` m ) e. CC ) |
80 |
78 44 38 79 72
|
fsum |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ m e. A ( ( k e. A |-> B ) ` m ) = ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) |
81 |
80
|
fveq2d |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( F ` sum_ m e. A ( ( k e. A |-> B ) ` m ) ) = ( F ` ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) ) |
82 |
|
fveq2 |
|- ( m = ( f ` x ) -> ( ( k e. A |-> ( F ` B ) ) ` m ) = ( ( k e. A |-> ( F ` B ) ) ` ( f ` x ) ) ) |
83 |
3
|
ffvelrni |
|- ( B e. CC -> ( F ` B ) e. CC ) |
84 |
2 83
|
syl |
|- ( ( ph /\ k e. A ) -> ( F ` B ) e. CC ) |
85 |
84
|
fmpttd |
|- ( ph -> ( k e. A |-> ( F ` B ) ) : A --> CC ) |
86 |
85
|
adantr |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( k e. A |-> ( F ` B ) ) : A --> CC ) |
87 |
86
|
ffvelrnda |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. A ) -> ( ( k e. A |-> ( F ` B ) ) ` m ) e. CC ) |
88 |
82 44 38 87 75
|
fsum |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ m e. A ( ( k e. A |-> ( F ` B ) ) ` m ) = ( seq 1 ( + , ( ( k e. A |-> ( F ` B ) ) o. f ) ) ` ( # ` A ) ) ) |
89 |
77 81 88
|
3eqtr4d |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( F ` sum_ m e. A ( ( k e. A |-> B ) ` m ) ) = sum_ m e. A ( ( k e. A |-> ( F ` B ) ) ` m ) ) |
90 |
|
sumfc |
|- sum_ m e. A ( ( k e. A |-> B ) ` m ) = sum_ k e. A B |
91 |
90
|
fveq2i |
|- ( F ` sum_ m e. A ( ( k e. A |-> B ) ` m ) ) = ( F ` sum_ k e. A B ) |
92 |
|
sumfc |
|- sum_ m e. A ( ( k e. A |-> ( F ` B ) ) ` m ) = sum_ k e. A ( F ` B ) |
93 |
89 91 92
|
3eqtr3g |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( F ` sum_ k e. A B ) = sum_ k e. A ( F ` B ) ) |
94 |
93
|
expr |
|- ( ( ph /\ ( # ` A ) e. NN ) -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> ( F ` sum_ k e. A B ) = sum_ k e. A ( F ` B ) ) ) |
95 |
94
|
exlimdv |
|- ( ( ph /\ ( # ` A ) e. NN ) -> ( E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> ( F ` sum_ k e. A B ) = sum_ k e. A ( F ` B ) ) ) |
96 |
95
|
expimpd |
|- ( ph -> ( ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( F ` sum_ k e. A B ) = sum_ k e. A ( F ` B ) ) ) |
97 |
|
fz1f1o |
|- ( A e. Fin -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
98 |
1 97
|
syl |
|- ( ph -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
99 |
33 96 98
|
mpjaod |
|- ( ph -> ( F ` sum_ k e. A B ) = sum_ k e. A ( F ` B ) ) |