Step |
Hyp |
Ref |
Expression |
1 |
|
fsumrev.1 |
|- ( ph -> K e. ZZ ) |
2 |
|
fsumrev.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
fsumrev.3 |
|- ( ph -> N e. ZZ ) |
4 |
|
fsumrev.4 |
|- ( ( ph /\ j e. ( M ... N ) ) -> A e. CC ) |
5 |
|
fsumrev.5 |
|- ( j = ( K - k ) -> A = B ) |
6 |
|
fzfid |
|- ( ph -> ( ( K - N ) ... ( K - M ) ) e. Fin ) |
7 |
|
eqid |
|- ( j e. ( ( K - N ) ... ( K - M ) ) |-> ( K - j ) ) = ( j e. ( ( K - N ) ... ( K - M ) ) |-> ( K - j ) ) |
8 |
|
ovexd |
|- ( ( ph /\ j e. ( ( K - N ) ... ( K - M ) ) ) -> ( K - j ) e. _V ) |
9 |
|
ovexd |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( K - k ) e. _V ) |
10 |
|
simprr |
|- ( ( ph /\ ( j e. ( ( K - N ) ... ( K - M ) ) /\ k = ( K - j ) ) ) -> k = ( K - j ) ) |
11 |
|
simprl |
|- ( ( ph /\ ( j e. ( ( K - N ) ... ( K - M ) ) /\ k = ( K - j ) ) ) -> j e. ( ( K - N ) ... ( K - M ) ) ) |
12 |
2
|
adantr |
|- ( ( ph /\ ( j e. ( ( K - N ) ... ( K - M ) ) /\ k = ( K - j ) ) ) -> M e. ZZ ) |
13 |
3
|
adantr |
|- ( ( ph /\ ( j e. ( ( K - N ) ... ( K - M ) ) /\ k = ( K - j ) ) ) -> N e. ZZ ) |
14 |
1
|
adantr |
|- ( ( ph /\ ( j e. ( ( K - N ) ... ( K - M ) ) /\ k = ( K - j ) ) ) -> K e. ZZ ) |
15 |
11
|
elfzelzd |
|- ( ( ph /\ ( j e. ( ( K - N ) ... ( K - M ) ) /\ k = ( K - j ) ) ) -> j e. ZZ ) |
16 |
|
fzrev |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ j e. ZZ ) ) -> ( j e. ( ( K - N ) ... ( K - M ) ) <-> ( K - j ) e. ( M ... N ) ) ) |
17 |
12 13 14 15 16
|
syl22anc |
|- ( ( ph /\ ( j e. ( ( K - N ) ... ( K - M ) ) /\ k = ( K - j ) ) ) -> ( j e. ( ( K - N ) ... ( K - M ) ) <-> ( K - j ) e. ( M ... N ) ) ) |
18 |
11 17
|
mpbid |
|- ( ( ph /\ ( j e. ( ( K - N ) ... ( K - M ) ) /\ k = ( K - j ) ) ) -> ( K - j ) e. ( M ... N ) ) |
19 |
10 18
|
eqeltrd |
|- ( ( ph /\ ( j e. ( ( K - N ) ... ( K - M ) ) /\ k = ( K - j ) ) ) -> k e. ( M ... N ) ) |
20 |
10
|
oveq2d |
|- ( ( ph /\ ( j e. ( ( K - N ) ... ( K - M ) ) /\ k = ( K - j ) ) ) -> ( K - k ) = ( K - ( K - j ) ) ) |
21 |
|
zcn |
|- ( K e. ZZ -> K e. CC ) |
22 |
|
zcn |
|- ( j e. ZZ -> j e. CC ) |
23 |
|
nncan |
|- ( ( K e. CC /\ j e. CC ) -> ( K - ( K - j ) ) = j ) |
24 |
21 22 23
|
syl2an |
|- ( ( K e. ZZ /\ j e. ZZ ) -> ( K - ( K - j ) ) = j ) |
25 |
1 15 24
|
syl2an2r |
|- ( ( ph /\ ( j e. ( ( K - N ) ... ( K - M ) ) /\ k = ( K - j ) ) ) -> ( K - ( K - j ) ) = j ) |
26 |
20 25
|
eqtr2d |
|- ( ( ph /\ ( j e. ( ( K - N ) ... ( K - M ) ) /\ k = ( K - j ) ) ) -> j = ( K - k ) ) |
27 |
19 26
|
jca |
|- ( ( ph /\ ( j e. ( ( K - N ) ... ( K - M ) ) /\ k = ( K - j ) ) ) -> ( k e. ( M ... N ) /\ j = ( K - k ) ) ) |
28 |
|
simprr |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( K - k ) ) ) -> j = ( K - k ) ) |
29 |
|
simprl |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( K - k ) ) ) -> k e. ( M ... N ) ) |
30 |
2
|
adantr |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( K - k ) ) ) -> M e. ZZ ) |
31 |
3
|
adantr |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( K - k ) ) ) -> N e. ZZ ) |
32 |
1
|
adantr |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( K - k ) ) ) -> K e. ZZ ) |
33 |
29
|
elfzelzd |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( K - k ) ) ) -> k e. ZZ ) |
34 |
|
fzrev2 |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ k e. ZZ ) ) -> ( k e. ( M ... N ) <-> ( K - k ) e. ( ( K - N ) ... ( K - M ) ) ) ) |
35 |
30 31 32 33 34
|
syl22anc |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( K - k ) ) ) -> ( k e. ( M ... N ) <-> ( K - k ) e. ( ( K - N ) ... ( K - M ) ) ) ) |
36 |
29 35
|
mpbid |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( K - k ) ) ) -> ( K - k ) e. ( ( K - N ) ... ( K - M ) ) ) |
37 |
28 36
|
eqeltrd |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( K - k ) ) ) -> j e. ( ( K - N ) ... ( K - M ) ) ) |
38 |
28
|
oveq2d |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( K - k ) ) ) -> ( K - j ) = ( K - ( K - k ) ) ) |
39 |
|
zcn |
|- ( k e. ZZ -> k e. CC ) |
40 |
|
nncan |
|- ( ( K e. CC /\ k e. CC ) -> ( K - ( K - k ) ) = k ) |
41 |
21 39 40
|
syl2an |
|- ( ( K e. ZZ /\ k e. ZZ ) -> ( K - ( K - k ) ) = k ) |
42 |
1 33 41
|
syl2an2r |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( K - k ) ) ) -> ( K - ( K - k ) ) = k ) |
43 |
38 42
|
eqtr2d |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( K - k ) ) ) -> k = ( K - j ) ) |
44 |
37 43
|
jca |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( K - k ) ) ) -> ( j e. ( ( K - N ) ... ( K - M ) ) /\ k = ( K - j ) ) ) |
45 |
27 44
|
impbida |
|- ( ph -> ( ( j e. ( ( K - N ) ... ( K - M ) ) /\ k = ( K - j ) ) <-> ( k e. ( M ... N ) /\ j = ( K - k ) ) ) ) |
46 |
7 8 9 45
|
f1od |
|- ( ph -> ( j e. ( ( K - N ) ... ( K - M ) ) |-> ( K - j ) ) : ( ( K - N ) ... ( K - M ) ) -1-1-onto-> ( M ... N ) ) |
47 |
|
oveq2 |
|- ( j = k -> ( K - j ) = ( K - k ) ) |
48 |
|
ovex |
|- ( K - k ) e. _V |
49 |
47 7 48
|
fvmpt |
|- ( k e. ( ( K - N ) ... ( K - M ) ) -> ( ( j e. ( ( K - N ) ... ( K - M ) ) |-> ( K - j ) ) ` k ) = ( K - k ) ) |
50 |
49
|
adantl |
|- ( ( ph /\ k e. ( ( K - N ) ... ( K - M ) ) ) -> ( ( j e. ( ( K - N ) ... ( K - M ) ) |-> ( K - j ) ) ` k ) = ( K - k ) ) |
51 |
5 6 46 50 4
|
fsumf1o |
|- ( ph -> sum_ j e. ( M ... N ) A = sum_ k e. ( ( K - N ) ... ( K - M ) ) B ) |