| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumrev2.1 |
|- ( ( ph /\ j e. ( M ... N ) ) -> A e. CC ) |
| 2 |
|
fsumrev2.2 |
|- ( j = ( ( M + N ) - k ) -> A = B ) |
| 3 |
|
sum0 |
|- sum_ j e. (/) A = 0 |
| 4 |
|
sum0 |
|- sum_ k e. (/) B = 0 |
| 5 |
3 4
|
eqtr4i |
|- sum_ j e. (/) A = sum_ k e. (/) B |
| 6 |
|
sumeq1 |
|- ( ( M ... N ) = (/) -> sum_ j e. ( M ... N ) A = sum_ j e. (/) A ) |
| 7 |
|
sumeq1 |
|- ( ( M ... N ) = (/) -> sum_ k e. ( M ... N ) B = sum_ k e. (/) B ) |
| 8 |
5 6 7
|
3eqtr4a |
|- ( ( M ... N ) = (/) -> sum_ j e. ( M ... N ) A = sum_ k e. ( M ... N ) B ) |
| 9 |
8
|
adantl |
|- ( ( ph /\ ( M ... N ) = (/) ) -> sum_ j e. ( M ... N ) A = sum_ k e. ( M ... N ) B ) |
| 10 |
|
fzn0 |
|- ( ( M ... N ) =/= (/) <-> N e. ( ZZ>= ` M ) ) |
| 11 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 12 |
11
|
adantl |
|- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> M e. ZZ ) |
| 13 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> N e. ZZ ) |
| 15 |
12 14
|
zaddcld |
|- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( M + N ) e. ZZ ) |
| 16 |
1
|
adantlr |
|- ( ( ( ph /\ N e. ( ZZ>= ` M ) ) /\ j e. ( M ... N ) ) -> A e. CC ) |
| 17 |
15 12 14 16 2
|
fsumrev |
|- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> sum_ j e. ( M ... N ) A = sum_ k e. ( ( ( M + N ) - N ) ... ( ( M + N ) - M ) ) B ) |
| 18 |
12
|
zcnd |
|- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> M e. CC ) |
| 19 |
14
|
zcnd |
|- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> N e. CC ) |
| 20 |
18 19
|
pncand |
|- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( ( M + N ) - N ) = M ) |
| 21 |
18 19
|
pncan2d |
|- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( ( M + N ) - M ) = N ) |
| 22 |
20 21
|
oveq12d |
|- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( ( ( M + N ) - N ) ... ( ( M + N ) - M ) ) = ( M ... N ) ) |
| 23 |
22
|
sumeq1d |
|- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> sum_ k e. ( ( ( M + N ) - N ) ... ( ( M + N ) - M ) ) B = sum_ k e. ( M ... N ) B ) |
| 24 |
17 23
|
eqtrd |
|- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> sum_ j e. ( M ... N ) A = sum_ k e. ( M ... N ) B ) |
| 25 |
10 24
|
sylan2b |
|- ( ( ph /\ ( M ... N ) =/= (/) ) -> sum_ j e. ( M ... N ) A = sum_ k e. ( M ... N ) B ) |
| 26 |
9 25
|
pm2.61dane |
|- ( ph -> sum_ j e. ( M ... N ) A = sum_ k e. ( M ... N ) B ) |