Description: Closure of a finite sum of positive reals. (Contributed by Mario Carneiro, 3-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumcl.1 | |- ( ph -> A e. Fin ) |
|
| fsumrpcl.2 | |- ( ph -> A =/= (/) ) |
||
| fsumrpcl.3 | |- ( ( ph /\ k e. A ) -> B e. RR+ ) |
||
| Assertion | fsumrpcl | |- ( ph -> sum_ k e. A B e. RR+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumcl.1 | |- ( ph -> A e. Fin ) |
|
| 2 | fsumrpcl.2 | |- ( ph -> A =/= (/) ) |
|
| 3 | fsumrpcl.3 | |- ( ( ph /\ k e. A ) -> B e. RR+ ) |
|
| 4 | rpssre | |- RR+ C_ RR |
|
| 5 | ax-resscn | |- RR C_ CC |
|
| 6 | 4 5 | sstri | |- RR+ C_ CC |
| 7 | 6 | a1i | |- ( ph -> RR+ C_ CC ) |
| 8 | rpaddcl | |- ( ( x e. RR+ /\ y e. RR+ ) -> ( x + y ) e. RR+ ) |
|
| 9 | 8 | adantl | |- ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> ( x + y ) e. RR+ ) |
| 10 | 7 9 1 3 2 | fsumcl2lem | |- ( ph -> sum_ k e. A B e. RR+ ) |