Metamath Proof Explorer


Theorem fsumrpcl

Description: Closure of a finite sum of positive reals. (Contributed by Mario Carneiro, 3-Jun-2014)

Ref Expression
Hypotheses fsumcl.1
|- ( ph -> A e. Fin )
fsumrpcl.2
|- ( ph -> A =/= (/) )
fsumrpcl.3
|- ( ( ph /\ k e. A ) -> B e. RR+ )
Assertion fsumrpcl
|- ( ph -> sum_ k e. A B e. RR+ )

Proof

Step Hyp Ref Expression
1 fsumcl.1
 |-  ( ph -> A e. Fin )
2 fsumrpcl.2
 |-  ( ph -> A =/= (/) )
3 fsumrpcl.3
 |-  ( ( ph /\ k e. A ) -> B e. RR+ )
4 rpssre
 |-  RR+ C_ RR
5 ax-resscn
 |-  RR C_ CC
6 4 5 sstri
 |-  RR+ C_ CC
7 6 a1i
 |-  ( ph -> RR+ C_ CC )
8 rpaddcl
 |-  ( ( x e. RR+ /\ y e. RR+ ) -> ( x + y ) e. RR+ )
9 8 adantl
 |-  ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> ( x + y ) e. RR+ )
10 7 9 1 3 2 fsumcl2lem
 |-  ( ph -> sum_ k e. A B e. RR+ )