Step |
Hyp |
Ref |
Expression |
1 |
|
fsumser.1 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) = A ) |
2 |
|
fsumser.2 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
3 |
|
fsumser.3 |
|- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
4 |
|
eleq1w |
|- ( m = k -> ( m e. ( M ... N ) <-> k e. ( M ... N ) ) ) |
5 |
|
fveq2 |
|- ( m = k -> ( F ` m ) = ( F ` k ) ) |
6 |
4 5
|
ifbieq1d |
|- ( m = k -> if ( m e. ( M ... N ) , ( F ` m ) , 0 ) = if ( k e. ( M ... N ) , ( F ` k ) , 0 ) ) |
7 |
|
eqid |
|- ( m e. ( ZZ>= ` M ) |-> if ( m e. ( M ... N ) , ( F ` m ) , 0 ) ) = ( m e. ( ZZ>= ` M ) |-> if ( m e. ( M ... N ) , ( F ` m ) , 0 ) ) |
8 |
|
fvex |
|- ( F ` k ) e. _V |
9 |
|
c0ex |
|- 0 e. _V |
10 |
8 9
|
ifex |
|- if ( k e. ( M ... N ) , ( F ` k ) , 0 ) e. _V |
11 |
6 7 10
|
fvmpt |
|- ( k e. ( ZZ>= ` M ) -> ( ( m e. ( ZZ>= ` M ) |-> if ( m e. ( M ... N ) , ( F ` m ) , 0 ) ) ` k ) = if ( k e. ( M ... N ) , ( F ` k ) , 0 ) ) |
12 |
1
|
ifeq1da |
|- ( ph -> if ( k e. ( M ... N ) , ( F ` k ) , 0 ) = if ( k e. ( M ... N ) , A , 0 ) ) |
13 |
11 12
|
sylan9eqr |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( m e. ( ZZ>= ` M ) |-> if ( m e. ( M ... N ) , ( F ` m ) , 0 ) ) ` k ) = if ( k e. ( M ... N ) , A , 0 ) ) |
14 |
|
ssidd |
|- ( ph -> ( M ... N ) C_ ( M ... N ) ) |
15 |
13 2 3 14
|
fsumsers |
|- ( ph -> sum_ k e. ( M ... N ) A = ( seq M ( + , ( m e. ( ZZ>= ` M ) |-> if ( m e. ( M ... N ) , ( F ` m ) , 0 ) ) ) ` N ) ) |
16 |
|
elfzuz |
|- ( k e. ( M ... N ) -> k e. ( ZZ>= ` M ) ) |
17 |
16 11
|
syl |
|- ( k e. ( M ... N ) -> ( ( m e. ( ZZ>= ` M ) |-> if ( m e. ( M ... N ) , ( F ` m ) , 0 ) ) ` k ) = if ( k e. ( M ... N ) , ( F ` k ) , 0 ) ) |
18 |
|
iftrue |
|- ( k e. ( M ... N ) -> if ( k e. ( M ... N ) , ( F ` k ) , 0 ) = ( F ` k ) ) |
19 |
17 18
|
eqtrd |
|- ( k e. ( M ... N ) -> ( ( m e. ( ZZ>= ` M ) |-> if ( m e. ( M ... N ) , ( F ` m ) , 0 ) ) ` k ) = ( F ` k ) ) |
20 |
19
|
adantl |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( ( m e. ( ZZ>= ` M ) |-> if ( m e. ( M ... N ) , ( F ` m ) , 0 ) ) ` k ) = ( F ` k ) ) |
21 |
2 20
|
seqfveq |
|- ( ph -> ( seq M ( + , ( m e. ( ZZ>= ` M ) |-> if ( m e. ( M ... N ) , ( F ` m ) , 0 ) ) ) ` N ) = ( seq M ( + , F ) ` N ) ) |
22 |
15 21
|
eqtrd |
|- ( ph -> sum_ k e. ( M ... N ) A = ( seq M ( + , F ) ` N ) ) |