Metamath Proof Explorer


Theorem fsumsermpt

Description: A finite sum expressed in terms of a partial sum of an infinite series. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses fsumsermpt.m
|- ( ph -> M e. ZZ )
fsumsermpt.z
|- Z = ( ZZ>= ` M )
fsumsermpt.a
|- ( ( ph /\ k e. Z ) -> A e. CC )
fsumsermpt.f
|- F = ( n e. Z |-> sum_ k e. ( M ... n ) A )
fsumsermpt.g
|- G = seq M ( + , ( k e. Z |-> A ) )
Assertion fsumsermpt
|- ( ph -> F = G )

Proof

Step Hyp Ref Expression
1 fsumsermpt.m
 |-  ( ph -> M e. ZZ )
2 fsumsermpt.z
 |-  Z = ( ZZ>= ` M )
3 fsumsermpt.a
 |-  ( ( ph /\ k e. Z ) -> A e. CC )
4 fsumsermpt.f
 |-  F = ( n e. Z |-> sum_ k e. ( M ... n ) A )
5 fsumsermpt.g
 |-  G = seq M ( + , ( k e. Z |-> A ) )
6 fzfid
 |-  ( ph -> ( M ... m ) e. Fin )
7 simpl
 |-  ( ( ph /\ k e. ( M ... m ) ) -> ph )
8 elfzuz
 |-  ( k e. ( M ... m ) -> k e. ( ZZ>= ` M ) )
9 8 2 eleqtrrdi
 |-  ( k e. ( M ... m ) -> k e. Z )
10 9 adantl
 |-  ( ( ph /\ k e. ( M ... m ) ) -> k e. Z )
11 7 10 3 syl2anc
 |-  ( ( ph /\ k e. ( M ... m ) ) -> A e. CC )
12 6 11 fsumcl
 |-  ( ph -> sum_ k e. ( M ... m ) A e. CC )
13 12 adantr
 |-  ( ( ph /\ m e. Z ) -> sum_ k e. ( M ... m ) A e. CC )
14 13 ralrimiva
 |-  ( ph -> A. m e. Z sum_ k e. ( M ... m ) A e. CC )
15 oveq2
 |-  ( n = m -> ( M ... n ) = ( M ... m ) )
16 15 sumeq1d
 |-  ( n = m -> sum_ k e. ( M ... n ) A = sum_ k e. ( M ... m ) A )
17 16 cbvmptv
 |-  ( n e. Z |-> sum_ k e. ( M ... n ) A ) = ( m e. Z |-> sum_ k e. ( M ... m ) A )
18 4 17 eqtri
 |-  F = ( m e. Z |-> sum_ k e. ( M ... m ) A )
19 18 fnmpt
 |-  ( A. m e. Z sum_ k e. ( M ... m ) A e. CC -> F Fn Z )
20 14 19 syl
 |-  ( ph -> F Fn Z )
21 simpr
 |-  ( ( ph /\ j e. Z ) -> j e. Z )
22 nfv
 |-  F/ k ( ph /\ j e. Z )
23 nfcv
 |-  F/_ k j
24 23 nfcsb1
 |-  F/_ k [_ j / k ]_ A
25 24 nfel1
 |-  F/ k [_ j / k ]_ A e. CC
26 22 25 nfim
 |-  F/ k ( ( ph /\ j e. Z ) -> [_ j / k ]_ A e. CC )
27 eleq1w
 |-  ( k = j -> ( k e. Z <-> j e. Z ) )
28 27 anbi2d
 |-  ( k = j -> ( ( ph /\ k e. Z ) <-> ( ph /\ j e. Z ) ) )
29 csbeq1a
 |-  ( k = j -> A = [_ j / k ]_ A )
30 29 eleq1d
 |-  ( k = j -> ( A e. CC <-> [_ j / k ]_ A e. CC ) )
31 28 30 imbi12d
 |-  ( k = j -> ( ( ( ph /\ k e. Z ) -> A e. CC ) <-> ( ( ph /\ j e. Z ) -> [_ j / k ]_ A e. CC ) ) )
32 26 31 3 chvarfv
 |-  ( ( ph /\ j e. Z ) -> [_ j / k ]_ A e. CC )
33 eqid
 |-  ( k e. Z |-> A ) = ( k e. Z |-> A )
34 23 24 29 33 fvmptf
 |-  ( ( j e. Z /\ [_ j / k ]_ A e. CC ) -> ( ( k e. Z |-> A ) ` j ) = [_ j / k ]_ A )
35 21 32 34 syl2anc
 |-  ( ( ph /\ j e. Z ) -> ( ( k e. Z |-> A ) ` j ) = [_ j / k ]_ A )
36 35 32 eqeltrd
 |-  ( ( ph /\ j e. Z ) -> ( ( k e. Z |-> A ) ` j ) e. CC )
37 addcl
 |-  ( ( j e. CC /\ x e. CC ) -> ( j + x ) e. CC )
38 37 adantl
 |-  ( ( ph /\ ( j e. CC /\ x e. CC ) ) -> ( j + x ) e. CC )
39 2 1 36 38 seqf
 |-  ( ph -> seq M ( + , ( k e. Z |-> A ) ) : Z --> CC )
40 39 ffnd
 |-  ( ph -> seq M ( + , ( k e. Z |-> A ) ) Fn Z )
41 5 a1i
 |-  ( ph -> G = seq M ( + , ( k e. Z |-> A ) ) )
42 41 fneq1d
 |-  ( ph -> ( G Fn Z <-> seq M ( + , ( k e. Z |-> A ) ) Fn Z ) )
43 40 42 mpbird
 |-  ( ph -> G Fn Z )
44 simpr
 |-  ( ( ph /\ m e. Z ) -> m e. Z )
45 18 fvmpt2
 |-  ( ( m e. Z /\ sum_ k e. ( M ... m ) A e. CC ) -> ( F ` m ) = sum_ k e. ( M ... m ) A )
46 44 13 45 syl2anc
 |-  ( ( ph /\ m e. Z ) -> ( F ` m ) = sum_ k e. ( M ... m ) A )
47 nfcv
 |-  F/_ j ( M ... m )
48 nfcv
 |-  F/_ k ( M ... m )
49 nfcv
 |-  F/_ j A
50 29 47 48 49 24 cbvsum
 |-  sum_ k e. ( M ... m ) A = sum_ j e. ( M ... m ) [_ j / k ]_ A
51 50 a1i
 |-  ( ( ph /\ m e. Z ) -> sum_ k e. ( M ... m ) A = sum_ j e. ( M ... m ) [_ j / k ]_ A )
52 46 51 eqtrd
 |-  ( ( ph /\ m e. Z ) -> ( F ` m ) = sum_ j e. ( M ... m ) [_ j / k ]_ A )
53 simpl
 |-  ( ( ph /\ j e. ( M ... m ) ) -> ph )
54 elfzuz
 |-  ( j e. ( M ... m ) -> j e. ( ZZ>= ` M ) )
55 54 2 eleqtrrdi
 |-  ( j e. ( M ... m ) -> j e. Z )
56 55 adantl
 |-  ( ( ph /\ j e. ( M ... m ) ) -> j e. Z )
57 53 56 35 syl2anc
 |-  ( ( ph /\ j e. ( M ... m ) ) -> ( ( k e. Z |-> A ) ` j ) = [_ j / k ]_ A )
58 57 adantlr
 |-  ( ( ( ph /\ m e. Z ) /\ j e. ( M ... m ) ) -> ( ( k e. Z |-> A ) ` j ) = [_ j / k ]_ A )
59 id
 |-  ( m e. Z -> m e. Z )
60 59 2 eleqtrdi
 |-  ( m e. Z -> m e. ( ZZ>= ` M ) )
61 60 adantl
 |-  ( ( ph /\ m e. Z ) -> m e. ( ZZ>= ` M ) )
62 53 56 32 syl2anc
 |-  ( ( ph /\ j e. ( M ... m ) ) -> [_ j / k ]_ A e. CC )
63 62 adantlr
 |-  ( ( ( ph /\ m e. Z ) /\ j e. ( M ... m ) ) -> [_ j / k ]_ A e. CC )
64 58 61 63 fsumser
 |-  ( ( ph /\ m e. Z ) -> sum_ j e. ( M ... m ) [_ j / k ]_ A = ( seq M ( + , ( k e. Z |-> A ) ) ` m ) )
65 5 fveq1i
 |-  ( G ` m ) = ( seq M ( + , ( k e. Z |-> A ) ) ` m )
66 65 eqcomi
 |-  ( seq M ( + , ( k e. Z |-> A ) ) ` m ) = ( G ` m )
67 66 a1i
 |-  ( ( ph /\ m e. Z ) -> ( seq M ( + , ( k e. Z |-> A ) ) ` m ) = ( G ` m ) )
68 52 64 67 3eqtrd
 |-  ( ( ph /\ m e. Z ) -> ( F ` m ) = ( G ` m ) )
69 20 43 68 eqfnfvd
 |-  ( ph -> F = G )