| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumsermpt.m |
|- ( ph -> M e. ZZ ) |
| 2 |
|
fsumsermpt.z |
|- Z = ( ZZ>= ` M ) |
| 3 |
|
fsumsermpt.a |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
| 4 |
|
fsumsermpt.f |
|- F = ( n e. Z |-> sum_ k e. ( M ... n ) A ) |
| 5 |
|
fsumsermpt.g |
|- G = seq M ( + , ( k e. Z |-> A ) ) |
| 6 |
|
fzfid |
|- ( ph -> ( M ... m ) e. Fin ) |
| 7 |
|
simpl |
|- ( ( ph /\ k e. ( M ... m ) ) -> ph ) |
| 8 |
|
elfzuz |
|- ( k e. ( M ... m ) -> k e. ( ZZ>= ` M ) ) |
| 9 |
8 2
|
eleqtrrdi |
|- ( k e. ( M ... m ) -> k e. Z ) |
| 10 |
9
|
adantl |
|- ( ( ph /\ k e. ( M ... m ) ) -> k e. Z ) |
| 11 |
7 10 3
|
syl2anc |
|- ( ( ph /\ k e. ( M ... m ) ) -> A e. CC ) |
| 12 |
6 11
|
fsumcl |
|- ( ph -> sum_ k e. ( M ... m ) A e. CC ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ m e. Z ) -> sum_ k e. ( M ... m ) A e. CC ) |
| 14 |
13
|
ralrimiva |
|- ( ph -> A. m e. Z sum_ k e. ( M ... m ) A e. CC ) |
| 15 |
|
oveq2 |
|- ( n = m -> ( M ... n ) = ( M ... m ) ) |
| 16 |
15
|
sumeq1d |
|- ( n = m -> sum_ k e. ( M ... n ) A = sum_ k e. ( M ... m ) A ) |
| 17 |
16
|
cbvmptv |
|- ( n e. Z |-> sum_ k e. ( M ... n ) A ) = ( m e. Z |-> sum_ k e. ( M ... m ) A ) |
| 18 |
4 17
|
eqtri |
|- F = ( m e. Z |-> sum_ k e. ( M ... m ) A ) |
| 19 |
18
|
fnmpt |
|- ( A. m e. Z sum_ k e. ( M ... m ) A e. CC -> F Fn Z ) |
| 20 |
14 19
|
syl |
|- ( ph -> F Fn Z ) |
| 21 |
|
simpr |
|- ( ( ph /\ j e. Z ) -> j e. Z ) |
| 22 |
|
nfv |
|- F/ k ( ph /\ j e. Z ) |
| 23 |
|
nfcv |
|- F/_ k j |
| 24 |
23
|
nfcsb1 |
|- F/_ k [_ j / k ]_ A |
| 25 |
24
|
nfel1 |
|- F/ k [_ j / k ]_ A e. CC |
| 26 |
22 25
|
nfim |
|- F/ k ( ( ph /\ j e. Z ) -> [_ j / k ]_ A e. CC ) |
| 27 |
|
eleq1w |
|- ( k = j -> ( k e. Z <-> j e. Z ) ) |
| 28 |
27
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. Z ) <-> ( ph /\ j e. Z ) ) ) |
| 29 |
|
csbeq1a |
|- ( k = j -> A = [_ j / k ]_ A ) |
| 30 |
29
|
eleq1d |
|- ( k = j -> ( A e. CC <-> [_ j / k ]_ A e. CC ) ) |
| 31 |
28 30
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. Z ) -> A e. CC ) <-> ( ( ph /\ j e. Z ) -> [_ j / k ]_ A e. CC ) ) ) |
| 32 |
26 31 3
|
chvarfv |
|- ( ( ph /\ j e. Z ) -> [_ j / k ]_ A e. CC ) |
| 33 |
|
eqid |
|- ( k e. Z |-> A ) = ( k e. Z |-> A ) |
| 34 |
23 24 29 33
|
fvmptf |
|- ( ( j e. Z /\ [_ j / k ]_ A e. CC ) -> ( ( k e. Z |-> A ) ` j ) = [_ j / k ]_ A ) |
| 35 |
21 32 34
|
syl2anc |
|- ( ( ph /\ j e. Z ) -> ( ( k e. Z |-> A ) ` j ) = [_ j / k ]_ A ) |
| 36 |
35 32
|
eqeltrd |
|- ( ( ph /\ j e. Z ) -> ( ( k e. Z |-> A ) ` j ) e. CC ) |
| 37 |
|
addcl |
|- ( ( j e. CC /\ x e. CC ) -> ( j + x ) e. CC ) |
| 38 |
37
|
adantl |
|- ( ( ph /\ ( j e. CC /\ x e. CC ) ) -> ( j + x ) e. CC ) |
| 39 |
2 1 36 38
|
seqf |
|- ( ph -> seq M ( + , ( k e. Z |-> A ) ) : Z --> CC ) |
| 40 |
39
|
ffnd |
|- ( ph -> seq M ( + , ( k e. Z |-> A ) ) Fn Z ) |
| 41 |
5
|
a1i |
|- ( ph -> G = seq M ( + , ( k e. Z |-> A ) ) ) |
| 42 |
41
|
fneq1d |
|- ( ph -> ( G Fn Z <-> seq M ( + , ( k e. Z |-> A ) ) Fn Z ) ) |
| 43 |
40 42
|
mpbird |
|- ( ph -> G Fn Z ) |
| 44 |
|
simpr |
|- ( ( ph /\ m e. Z ) -> m e. Z ) |
| 45 |
18
|
fvmpt2 |
|- ( ( m e. Z /\ sum_ k e. ( M ... m ) A e. CC ) -> ( F ` m ) = sum_ k e. ( M ... m ) A ) |
| 46 |
44 13 45
|
syl2anc |
|- ( ( ph /\ m e. Z ) -> ( F ` m ) = sum_ k e. ( M ... m ) A ) |
| 47 |
|
nfcv |
|- F/_ j A |
| 48 |
29 47 24
|
cbvsum |
|- sum_ k e. ( M ... m ) A = sum_ j e. ( M ... m ) [_ j / k ]_ A |
| 49 |
48
|
a1i |
|- ( ( ph /\ m e. Z ) -> sum_ k e. ( M ... m ) A = sum_ j e. ( M ... m ) [_ j / k ]_ A ) |
| 50 |
46 49
|
eqtrd |
|- ( ( ph /\ m e. Z ) -> ( F ` m ) = sum_ j e. ( M ... m ) [_ j / k ]_ A ) |
| 51 |
|
simpl |
|- ( ( ph /\ j e. ( M ... m ) ) -> ph ) |
| 52 |
|
elfzuz |
|- ( j e. ( M ... m ) -> j e. ( ZZ>= ` M ) ) |
| 53 |
52 2
|
eleqtrrdi |
|- ( j e. ( M ... m ) -> j e. Z ) |
| 54 |
53
|
adantl |
|- ( ( ph /\ j e. ( M ... m ) ) -> j e. Z ) |
| 55 |
51 54 35
|
syl2anc |
|- ( ( ph /\ j e. ( M ... m ) ) -> ( ( k e. Z |-> A ) ` j ) = [_ j / k ]_ A ) |
| 56 |
55
|
adantlr |
|- ( ( ( ph /\ m e. Z ) /\ j e. ( M ... m ) ) -> ( ( k e. Z |-> A ) ` j ) = [_ j / k ]_ A ) |
| 57 |
|
id |
|- ( m e. Z -> m e. Z ) |
| 58 |
57 2
|
eleqtrdi |
|- ( m e. Z -> m e. ( ZZ>= ` M ) ) |
| 59 |
58
|
adantl |
|- ( ( ph /\ m e. Z ) -> m e. ( ZZ>= ` M ) ) |
| 60 |
51 54 32
|
syl2anc |
|- ( ( ph /\ j e. ( M ... m ) ) -> [_ j / k ]_ A e. CC ) |
| 61 |
60
|
adantlr |
|- ( ( ( ph /\ m e. Z ) /\ j e. ( M ... m ) ) -> [_ j / k ]_ A e. CC ) |
| 62 |
56 59 61
|
fsumser |
|- ( ( ph /\ m e. Z ) -> sum_ j e. ( M ... m ) [_ j / k ]_ A = ( seq M ( + , ( k e. Z |-> A ) ) ` m ) ) |
| 63 |
5
|
fveq1i |
|- ( G ` m ) = ( seq M ( + , ( k e. Z |-> A ) ) ` m ) |
| 64 |
63
|
eqcomi |
|- ( seq M ( + , ( k e. Z |-> A ) ) ` m ) = ( G ` m ) |
| 65 |
64
|
a1i |
|- ( ( ph /\ m e. Z ) -> ( seq M ( + , ( k e. Z |-> A ) ) ` m ) = ( G ` m ) ) |
| 66 |
50 62 65
|
3eqtrd |
|- ( ( ph /\ m e. Z ) -> ( F ` m ) = ( G ` m ) ) |
| 67 |
20 43 66
|
eqfnfvd |
|- ( ph -> F = G ) |