Step |
Hyp |
Ref |
Expression |
1 |
|
fsumsers.1 |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = if ( k e. A , B , 0 ) ) |
2 |
|
fsumsers.2 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
3 |
|
fsumsers.3 |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
4 |
|
fsumsers.4 |
|- ( ph -> A C_ ( M ... N ) ) |
5 |
|
eqid |
|- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
6 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
7 |
2 6
|
syl |
|- ( ph -> M e. ZZ ) |
8 |
|
fzssuz |
|- ( M ... N ) C_ ( ZZ>= ` M ) |
9 |
4 8
|
sstrdi |
|- ( ph -> A C_ ( ZZ>= ` M ) ) |
10 |
5 7 9 1 3
|
zsum |
|- ( ph -> sum_ k e. A B = ( ~~> ` seq M ( + , F ) ) ) |
11 |
|
fclim |
|- ~~> : dom ~~> --> CC |
12 |
|
ffun |
|- ( ~~> : dom ~~> --> CC -> Fun ~~> ) |
13 |
11 12
|
ax-mp |
|- Fun ~~> |
14 |
1 2 3 4
|
fsumcvg2 |
|- ( ph -> seq M ( + , F ) ~~> ( seq M ( + , F ) ` N ) ) |
15 |
|
funbrfv |
|- ( Fun ~~> -> ( seq M ( + , F ) ~~> ( seq M ( + , F ) ` N ) -> ( ~~> ` seq M ( + , F ) ) = ( seq M ( + , F ) ` N ) ) ) |
16 |
13 14 15
|
mpsyl |
|- ( ph -> ( ~~> ` seq M ( + , F ) ) = ( seq M ( + , F ) ` N ) ) |
17 |
10 16
|
eqtrd |
|- ( ph -> sum_ k e. A B = ( seq M ( + , F ) ` N ) ) |