| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fsumrev.1 | 
							 |-  ( ph -> K e. ZZ )  | 
						
						
							| 2 | 
							
								
							 | 
							fsumrev.2 | 
							 |-  ( ph -> M e. ZZ )  | 
						
						
							| 3 | 
							
								
							 | 
							fsumrev.3 | 
							 |-  ( ph -> N e. ZZ )  | 
						
						
							| 4 | 
							
								
							 | 
							fsumrev.4 | 
							 |-  ( ( ph /\ j e. ( M ... N ) ) -> A e. CC )  | 
						
						
							| 5 | 
							
								
							 | 
							fsumshftm.5 | 
							 |-  ( j = ( k + K ) -> A = B )  | 
						
						
							| 6 | 
							
								
							 | 
							csbeq1a | 
							 |-  ( j = m -> A = [_ m / j ]_ A )  | 
						
						
							| 7 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ m A  | 
						
						
							| 8 | 
							
								
							 | 
							nfcsb1v | 
							 |-  F/_ j [_ m / j ]_ A  | 
						
						
							| 9 | 
							
								6 7 8
							 | 
							cbvsum | 
							 |-  sum_ j e. ( M ... N ) A = sum_ m e. ( M ... N ) [_ m / j ]_ A  | 
						
						
							| 10 | 
							
								1
							 | 
							znegcld | 
							 |-  ( ph -> -u K e. ZZ )  | 
						
						
							| 11 | 
							
								4
							 | 
							ralrimiva | 
							 |-  ( ph -> A. j e. ( M ... N ) A e. CC )  | 
						
						
							| 12 | 
							
								8
							 | 
							nfel1 | 
							 |-  F/ j [_ m / j ]_ A e. CC  | 
						
						
							| 13 | 
							
								6
							 | 
							eleq1d | 
							 |-  ( j = m -> ( A e. CC <-> [_ m / j ]_ A e. CC ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							rspc | 
							 |-  ( m e. ( M ... N ) -> ( A. j e. ( M ... N ) A e. CC -> [_ m / j ]_ A e. CC ) )  | 
						
						
							| 15 | 
							
								11 14
							 | 
							mpan9 | 
							 |-  ( ( ph /\ m e. ( M ... N ) ) -> [_ m / j ]_ A e. CC )  | 
						
						
							| 16 | 
							
								
							 | 
							csbeq1 | 
							 |-  ( m = ( k - -u K ) -> [_ m / j ]_ A = [_ ( k - -u K ) / j ]_ A )  | 
						
						
							| 17 | 
							
								10 2 3 15 16
							 | 
							fsumshft | 
							 |-  ( ph -> sum_ m e. ( M ... N ) [_ m / j ]_ A = sum_ k e. ( ( M + -u K ) ... ( N + -u K ) ) [_ ( k - -u K ) / j ]_ A )  | 
						
						
							| 18 | 
							
								2
							 | 
							zcnd | 
							 |-  ( ph -> M e. CC )  | 
						
						
							| 19 | 
							
								1
							 | 
							zcnd | 
							 |-  ( ph -> K e. CC )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							negsubd | 
							 |-  ( ph -> ( M + -u K ) = ( M - K ) )  | 
						
						
							| 21 | 
							
								3
							 | 
							zcnd | 
							 |-  ( ph -> N e. CC )  | 
						
						
							| 22 | 
							
								21 19
							 | 
							negsubd | 
							 |-  ( ph -> ( N + -u K ) = ( N - K ) )  | 
						
						
							| 23 | 
							
								20 22
							 | 
							oveq12d | 
							 |-  ( ph -> ( ( M + -u K ) ... ( N + -u K ) ) = ( ( M - K ) ... ( N - K ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							sumeq1d | 
							 |-  ( ph -> sum_ k e. ( ( M + -u K ) ... ( N + -u K ) ) [_ ( k - -u K ) / j ]_ A = sum_ k e. ( ( M - K ) ... ( N - K ) ) [_ ( k - -u K ) / j ]_ A )  | 
						
						
							| 25 | 
							
								
							 | 
							elfzelz | 
							 |-  ( k e. ( ( M - K ) ... ( N - K ) ) -> k e. ZZ )  | 
						
						
							| 26 | 
							
								25
							 | 
							zcnd | 
							 |-  ( k e. ( ( M - K ) ... ( N - K ) ) -> k e. CC )  | 
						
						
							| 27 | 
							
								
							 | 
							subneg | 
							 |-  ( ( k e. CC /\ K e. CC ) -> ( k - -u K ) = ( k + K ) )  | 
						
						
							| 28 | 
							
								26 19 27
							 | 
							syl2anr | 
							 |-  ( ( ph /\ k e. ( ( M - K ) ... ( N - K ) ) ) -> ( k - -u K ) = ( k + K ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							csbeq1d | 
							 |-  ( ( ph /\ k e. ( ( M - K ) ... ( N - K ) ) ) -> [_ ( k - -u K ) / j ]_ A = [_ ( k + K ) / j ]_ A )  | 
						
						
							| 30 | 
							
								
							 | 
							ovex | 
							 |-  ( k + K ) e. _V  | 
						
						
							| 31 | 
							
								30 5
							 | 
							csbie | 
							 |-  [_ ( k + K ) / j ]_ A = B  | 
						
						
							| 32 | 
							
								29 31
							 | 
							eqtrdi | 
							 |-  ( ( ph /\ k e. ( ( M - K ) ... ( N - K ) ) ) -> [_ ( k - -u K ) / j ]_ A = B )  | 
						
						
							| 33 | 
							
								32
							 | 
							sumeq2dv | 
							 |-  ( ph -> sum_ k e. ( ( M - K ) ... ( N - K ) ) [_ ( k - -u K ) / j ]_ A = sum_ k e. ( ( M - K ) ... ( N - K ) ) B )  | 
						
						
							| 34 | 
							
								17 24 33
							 | 
							3eqtrd | 
							 |-  ( ph -> sum_ m e. ( M ... N ) [_ m / j ]_ A = sum_ k e. ( ( M - K ) ... ( N - K ) ) B )  | 
						
						
							| 35 | 
							
								9 34
							 | 
							eqtrid | 
							 |-  ( ph -> sum_ j e. ( M ... N ) A = sum_ k e. ( ( M - K ) ... ( N - K ) ) B )  |