Step |
Hyp |
Ref |
Expression |
1 |
|
fsumsplit1.kph |
|- F/ k ph |
2 |
|
fsumsplit1.kd |
|- F/_ k D |
3 |
|
fsumsplit1.a |
|- ( ph -> A e. Fin ) |
4 |
|
fsumsplit1.b |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
5 |
|
fsumsplit1.c |
|- ( ph -> C e. A ) |
6 |
|
fsumsplit1.bd |
|- ( k = C -> B = D ) |
7 |
|
uncom |
|- ( ( A \ { C } ) u. { C } ) = ( { C } u. ( A \ { C } ) ) |
8 |
7
|
a1i |
|- ( ph -> ( ( A \ { C } ) u. { C } ) = ( { C } u. ( A \ { C } ) ) ) |
9 |
5
|
snssd |
|- ( ph -> { C } C_ A ) |
10 |
|
undif |
|- ( { C } C_ A <-> ( { C } u. ( A \ { C } ) ) = A ) |
11 |
9 10
|
sylib |
|- ( ph -> ( { C } u. ( A \ { C } ) ) = A ) |
12 |
|
eqidd |
|- ( ph -> A = A ) |
13 |
8 11 12
|
3eqtrrd |
|- ( ph -> A = ( ( A \ { C } ) u. { C } ) ) |
14 |
13
|
sumeq1d |
|- ( ph -> sum_ k e. A B = sum_ k e. ( ( A \ { C } ) u. { C } ) B ) |
15 |
|
diffi |
|- ( A e. Fin -> ( A \ { C } ) e. Fin ) |
16 |
3 15
|
syl |
|- ( ph -> ( A \ { C } ) e. Fin ) |
17 |
|
neldifsnd |
|- ( ph -> -. C e. ( A \ { C } ) ) |
18 |
|
simpl |
|- ( ( ph /\ k e. ( A \ { C } ) ) -> ph ) |
19 |
|
eldifi |
|- ( k e. ( A \ { C } ) -> k e. A ) |
20 |
19
|
adantl |
|- ( ( ph /\ k e. ( A \ { C } ) ) -> k e. A ) |
21 |
18 20 4
|
syl2anc |
|- ( ( ph /\ k e. ( A \ { C } ) ) -> B e. CC ) |
22 |
2
|
a1i |
|- ( ph -> F/_ k D ) |
23 |
|
simpr |
|- ( ( ph /\ k = C ) -> k = C ) |
24 |
23 6
|
syl |
|- ( ( ph /\ k = C ) -> B = D ) |
25 |
1 22 5 24
|
csbiedf |
|- ( ph -> [_ C / k ]_ B = D ) |
26 |
25
|
eqcomd |
|- ( ph -> D = [_ C / k ]_ B ) |
27 |
5
|
ancli |
|- ( ph -> ( ph /\ C e. A ) ) |
28 |
|
nfcv |
|- F/_ k C |
29 |
|
nfv |
|- F/ k C e. A |
30 |
1 29
|
nfan |
|- F/ k ( ph /\ C e. A ) |
31 |
28
|
nfcsb1 |
|- F/_ k [_ C / k ]_ B |
32 |
|
nfcv |
|- F/_ k CC |
33 |
31 32
|
nfel |
|- F/ k [_ C / k ]_ B e. CC |
34 |
30 33
|
nfim |
|- F/ k ( ( ph /\ C e. A ) -> [_ C / k ]_ B e. CC ) |
35 |
|
eleq1 |
|- ( k = C -> ( k e. A <-> C e. A ) ) |
36 |
35
|
anbi2d |
|- ( k = C -> ( ( ph /\ k e. A ) <-> ( ph /\ C e. A ) ) ) |
37 |
|
csbeq1a |
|- ( k = C -> B = [_ C / k ]_ B ) |
38 |
37
|
eleq1d |
|- ( k = C -> ( B e. CC <-> [_ C / k ]_ B e. CC ) ) |
39 |
36 38
|
imbi12d |
|- ( k = C -> ( ( ( ph /\ k e. A ) -> B e. CC ) <-> ( ( ph /\ C e. A ) -> [_ C / k ]_ B e. CC ) ) ) |
40 |
28 34 39 4
|
vtoclgf |
|- ( C e. A -> ( ( ph /\ C e. A ) -> [_ C / k ]_ B e. CC ) ) |
41 |
5 27 40
|
sylc |
|- ( ph -> [_ C / k ]_ B e. CC ) |
42 |
26 41
|
eqeltrd |
|- ( ph -> D e. CC ) |
43 |
1 2 16 5 17 21 6 42
|
fsumsplitsn |
|- ( ph -> sum_ k e. ( ( A \ { C } ) u. { C } ) B = ( sum_ k e. ( A \ { C } ) B + D ) ) |
44 |
1 16 21
|
fsumclf |
|- ( ph -> sum_ k e. ( A \ { C } ) B e. CC ) |
45 |
44 42
|
addcomd |
|- ( ph -> ( sum_ k e. ( A \ { C } ) B + D ) = ( D + sum_ k e. ( A \ { C } ) B ) ) |
46 |
14 43 45
|
3eqtrd |
|- ( ph -> sum_ k e. A B = ( D + sum_ k e. ( A \ { C } ) B ) ) |