Step |
Hyp |
Ref |
Expression |
1 |
|
fsumsplitf.ph |
|- F/ k ph |
2 |
|
fsumsplitf.ab |
|- ( ph -> ( A i^i B ) = (/) ) |
3 |
|
fsumsplitf.u |
|- ( ph -> U = ( A u. B ) ) |
4 |
|
fsumsplitf.fi |
|- ( ph -> U e. Fin ) |
5 |
|
fsumsplitf.c |
|- ( ( ph /\ k e. U ) -> C e. CC ) |
6 |
|
nfcv |
|- F/_ j C |
7 |
|
nfcsb1v |
|- F/_ k [_ j / k ]_ C |
8 |
|
csbeq1a |
|- ( k = j -> C = [_ j / k ]_ C ) |
9 |
6 7 8
|
cbvsumi |
|- sum_ k e. U C = sum_ j e. U [_ j / k ]_ C |
10 |
9
|
a1i |
|- ( ph -> sum_ k e. U C = sum_ j e. U [_ j / k ]_ C ) |
11 |
|
nfv |
|- F/ k j e. U |
12 |
1 11
|
nfan |
|- F/ k ( ph /\ j e. U ) |
13 |
7
|
nfel1 |
|- F/ k [_ j / k ]_ C e. CC |
14 |
12 13
|
nfim |
|- F/ k ( ( ph /\ j e. U ) -> [_ j / k ]_ C e. CC ) |
15 |
|
eleq1w |
|- ( k = j -> ( k e. U <-> j e. U ) ) |
16 |
15
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. U ) <-> ( ph /\ j e. U ) ) ) |
17 |
8
|
eleq1d |
|- ( k = j -> ( C e. CC <-> [_ j / k ]_ C e. CC ) ) |
18 |
16 17
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. U ) -> C e. CC ) <-> ( ( ph /\ j e. U ) -> [_ j / k ]_ C e. CC ) ) ) |
19 |
14 18 5
|
chvarfv |
|- ( ( ph /\ j e. U ) -> [_ j / k ]_ C e. CC ) |
20 |
2 3 4 19
|
fsumsplit |
|- ( ph -> sum_ j e. U [_ j / k ]_ C = ( sum_ j e. A [_ j / k ]_ C + sum_ j e. B [_ j / k ]_ C ) ) |
21 |
|
csbeq1a |
|- ( j = k -> [_ j / k ]_ C = [_ k / j ]_ [_ j / k ]_ C ) |
22 |
|
csbcow |
|- [_ k / j ]_ [_ j / k ]_ C = [_ k / k ]_ C |
23 |
|
csbid |
|- [_ k / k ]_ C = C |
24 |
22 23
|
eqtri |
|- [_ k / j ]_ [_ j / k ]_ C = C |
25 |
21 24
|
eqtrdi |
|- ( j = k -> [_ j / k ]_ C = C ) |
26 |
7 6 25
|
cbvsumi |
|- sum_ j e. A [_ j / k ]_ C = sum_ k e. A C |
27 |
7 6 25
|
cbvsumi |
|- sum_ j e. B [_ j / k ]_ C = sum_ k e. B C |
28 |
26 27
|
oveq12i |
|- ( sum_ j e. A [_ j / k ]_ C + sum_ j e. B [_ j / k ]_ C ) = ( sum_ k e. A C + sum_ k e. B C ) |
29 |
28
|
a1i |
|- ( ph -> ( sum_ j e. A [_ j / k ]_ C + sum_ j e. B [_ j / k ]_ C ) = ( sum_ k e. A C + sum_ k e. B C ) ) |
30 |
10 20 29
|
3eqtrd |
|- ( ph -> sum_ k e. U C = ( sum_ k e. A C + sum_ k e. B C ) ) |