| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sumss.1 |
|- ( ph -> A C_ B ) |
| 2 |
|
sumss.2 |
|- ( ( ph /\ k e. A ) -> C e. CC ) |
| 3 |
|
sumss.3 |
|- ( ( ph /\ k e. ( B \ A ) ) -> C = 0 ) |
| 4 |
|
fsumss.4 |
|- ( ph -> B e. Fin ) |
| 5 |
1
|
adantr |
|- ( ( ph /\ B = (/) ) -> A C_ B ) |
| 6 |
2
|
adantlr |
|- ( ( ( ph /\ B = (/) ) /\ k e. A ) -> C e. CC ) |
| 7 |
3
|
adantlr |
|- ( ( ( ph /\ B = (/) ) /\ k e. ( B \ A ) ) -> C = 0 ) |
| 8 |
|
simpr |
|- ( ( ph /\ B = (/) ) -> B = (/) ) |
| 9 |
|
0ss |
|- (/) C_ ( ZZ>= ` 0 ) |
| 10 |
8 9
|
eqsstrdi |
|- ( ( ph /\ B = (/) ) -> B C_ ( ZZ>= ` 0 ) ) |
| 11 |
5 6 7 10
|
sumss |
|- ( ( ph /\ B = (/) ) -> sum_ k e. A C = sum_ k e. B C ) |
| 12 |
11
|
ex |
|- ( ph -> ( B = (/) -> sum_ k e. A C = sum_ k e. B C ) ) |
| 13 |
|
cnvimass |
|- ( `' f " A ) C_ dom f |
| 14 |
|
simprr |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) |
| 15 |
|
f1of |
|- ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B -> f : ( 1 ... ( # ` B ) ) --> B ) |
| 16 |
14 15
|
syl |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> f : ( 1 ... ( # ` B ) ) --> B ) |
| 17 |
13 16
|
fssdm |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( `' f " A ) C_ ( 1 ... ( # ` B ) ) ) |
| 18 |
16
|
ffnd |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> f Fn ( 1 ... ( # ` B ) ) ) |
| 19 |
|
elpreima |
|- ( f Fn ( 1 ... ( # ` B ) ) -> ( n e. ( `' f " A ) <-> ( n e. ( 1 ... ( # ` B ) ) /\ ( f ` n ) e. A ) ) ) |
| 20 |
18 19
|
syl |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( n e. ( `' f " A ) <-> ( n e. ( 1 ... ( # ` B ) ) /\ ( f ` n ) e. A ) ) ) |
| 21 |
16
|
ffvelcdmda |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( 1 ... ( # ` B ) ) ) -> ( f ` n ) e. B ) |
| 22 |
21
|
ex |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( n e. ( 1 ... ( # ` B ) ) -> ( f ` n ) e. B ) ) |
| 23 |
22
|
adantrd |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( ( n e. ( 1 ... ( # ` B ) ) /\ ( f ` n ) e. A ) -> ( f ` n ) e. B ) ) |
| 24 |
20 23
|
sylbid |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( n e. ( `' f " A ) -> ( f ` n ) e. B ) ) |
| 25 |
24
|
imp |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( `' f " A ) ) -> ( f ` n ) e. B ) |
| 26 |
2
|
ex |
|- ( ph -> ( k e. A -> C e. CC ) ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ k e. B ) -> ( k e. A -> C e. CC ) ) |
| 28 |
|
eldif |
|- ( k e. ( B \ A ) <-> ( k e. B /\ -. k e. A ) ) |
| 29 |
|
0cn |
|- 0 e. CC |
| 30 |
3 29
|
eqeltrdi |
|- ( ( ph /\ k e. ( B \ A ) ) -> C e. CC ) |
| 31 |
28 30
|
sylan2br |
|- ( ( ph /\ ( k e. B /\ -. k e. A ) ) -> C e. CC ) |
| 32 |
31
|
expr |
|- ( ( ph /\ k e. B ) -> ( -. k e. A -> C e. CC ) ) |
| 33 |
27 32
|
pm2.61d |
|- ( ( ph /\ k e. B ) -> C e. CC ) |
| 34 |
33
|
fmpttd |
|- ( ph -> ( k e. B |-> C ) : B --> CC ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( k e. B |-> C ) : B --> CC ) |
| 36 |
35
|
ffvelcdmda |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ ( f ` n ) e. B ) -> ( ( k e. B |-> C ) ` ( f ` n ) ) e. CC ) |
| 37 |
25 36
|
syldan |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( `' f " A ) ) -> ( ( k e. B |-> C ) ` ( f ` n ) ) e. CC ) |
| 38 |
|
eldifi |
|- ( n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) -> n e. ( 1 ... ( # ` B ) ) ) |
| 39 |
38 21
|
sylan2 |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( f ` n ) e. B ) |
| 40 |
|
eldifn |
|- ( n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) -> -. n e. ( `' f " A ) ) |
| 41 |
40
|
adantl |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> -. n e. ( `' f " A ) ) |
| 42 |
38
|
adantl |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> n e. ( 1 ... ( # ` B ) ) ) |
| 43 |
20
|
adantr |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( n e. ( `' f " A ) <-> ( n e. ( 1 ... ( # ` B ) ) /\ ( f ` n ) e. A ) ) ) |
| 44 |
42 43
|
mpbirand |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( n e. ( `' f " A ) <-> ( f ` n ) e. A ) ) |
| 45 |
41 44
|
mtbid |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> -. ( f ` n ) e. A ) |
| 46 |
39 45
|
eldifd |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( f ` n ) e. ( B \ A ) ) |
| 47 |
|
difss |
|- ( B \ A ) C_ B |
| 48 |
|
resmpt |
|- ( ( B \ A ) C_ B -> ( ( k e. B |-> C ) |` ( B \ A ) ) = ( k e. ( B \ A ) |-> C ) ) |
| 49 |
47 48
|
ax-mp |
|- ( ( k e. B |-> C ) |` ( B \ A ) ) = ( k e. ( B \ A ) |-> C ) |
| 50 |
49
|
fveq1i |
|- ( ( ( k e. B |-> C ) |` ( B \ A ) ) ` ( f ` n ) ) = ( ( k e. ( B \ A ) |-> C ) ` ( f ` n ) ) |
| 51 |
|
fvres |
|- ( ( f ` n ) e. ( B \ A ) -> ( ( ( k e. B |-> C ) |` ( B \ A ) ) ` ( f ` n ) ) = ( ( k e. B |-> C ) ` ( f ` n ) ) ) |
| 52 |
50 51
|
eqtr3id |
|- ( ( f ` n ) e. ( B \ A ) -> ( ( k e. ( B \ A ) |-> C ) ` ( f ` n ) ) = ( ( k e. B |-> C ) ` ( f ` n ) ) ) |
| 53 |
46 52
|
syl |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( ( k e. ( B \ A ) |-> C ) ` ( f ` n ) ) = ( ( k e. B |-> C ) ` ( f ` n ) ) ) |
| 54 |
|
c0ex |
|- 0 e. _V |
| 55 |
54
|
elsn2 |
|- ( C e. { 0 } <-> C = 0 ) |
| 56 |
3 55
|
sylibr |
|- ( ( ph /\ k e. ( B \ A ) ) -> C e. { 0 } ) |
| 57 |
56
|
fmpttd |
|- ( ph -> ( k e. ( B \ A ) |-> C ) : ( B \ A ) --> { 0 } ) |
| 58 |
57
|
ad2antrr |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( k e. ( B \ A ) |-> C ) : ( B \ A ) --> { 0 } ) |
| 59 |
58 46
|
ffvelcdmd |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( ( k e. ( B \ A ) |-> C ) ` ( f ` n ) ) e. { 0 } ) |
| 60 |
|
elsni |
|- ( ( ( k e. ( B \ A ) |-> C ) ` ( f ` n ) ) e. { 0 } -> ( ( k e. ( B \ A ) |-> C ) ` ( f ` n ) ) = 0 ) |
| 61 |
59 60
|
syl |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( ( k e. ( B \ A ) |-> C ) ` ( f ` n ) ) = 0 ) |
| 62 |
53 61
|
eqtr3d |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( ( k e. B |-> C ) ` ( f ` n ) ) = 0 ) |
| 63 |
|
fzssuz |
|- ( 1 ... ( # ` B ) ) C_ ( ZZ>= ` 1 ) |
| 64 |
63
|
a1i |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( 1 ... ( # ` B ) ) C_ ( ZZ>= ` 1 ) ) |
| 65 |
17 37 62 64
|
sumss |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> sum_ n e. ( `' f " A ) ( ( k e. B |-> C ) ` ( f ` n ) ) = sum_ n e. ( 1 ... ( # ` B ) ) ( ( k e. B |-> C ) ` ( f ` n ) ) ) |
| 66 |
1
|
ad2antrr |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ m e. A ) -> A C_ B ) |
| 67 |
66
|
resmptd |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ m e. A ) -> ( ( k e. B |-> C ) |` A ) = ( k e. A |-> C ) ) |
| 68 |
67
|
fveq1d |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ m e. A ) -> ( ( ( k e. B |-> C ) |` A ) ` m ) = ( ( k e. A |-> C ) ` m ) ) |
| 69 |
|
fvres |
|- ( m e. A -> ( ( ( k e. B |-> C ) |` A ) ` m ) = ( ( k e. B |-> C ) ` m ) ) |
| 70 |
69
|
adantl |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ m e. A ) -> ( ( ( k e. B |-> C ) |` A ) ` m ) = ( ( k e. B |-> C ) ` m ) ) |
| 71 |
68 70
|
eqtr3d |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ m e. A ) -> ( ( k e. A |-> C ) ` m ) = ( ( k e. B |-> C ) ` m ) ) |
| 72 |
71
|
sumeq2dv |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> sum_ m e. A ( ( k e. A |-> C ) ` m ) = sum_ m e. A ( ( k e. B |-> C ) ` m ) ) |
| 73 |
|
fveq2 |
|- ( m = ( f ` n ) -> ( ( k e. B |-> C ) ` m ) = ( ( k e. B |-> C ) ` ( f ` n ) ) ) |
| 74 |
|
fzfid |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( 1 ... ( # ` B ) ) e. Fin ) |
| 75 |
74 16
|
fisuppfi |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( `' f " A ) e. Fin ) |
| 76 |
|
f1of1 |
|- ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B -> f : ( 1 ... ( # ` B ) ) -1-1-> B ) |
| 77 |
14 76
|
syl |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> f : ( 1 ... ( # ` B ) ) -1-1-> B ) |
| 78 |
|
f1ores |
|- ( ( f : ( 1 ... ( # ` B ) ) -1-1-> B /\ ( `' f " A ) C_ ( 1 ... ( # ` B ) ) ) -> ( f |` ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> ( f " ( `' f " A ) ) ) |
| 79 |
77 17 78
|
syl2anc |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( f |` ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> ( f " ( `' f " A ) ) ) |
| 80 |
|
f1ofo |
|- ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B -> f : ( 1 ... ( # ` B ) ) -onto-> B ) |
| 81 |
14 80
|
syl |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> f : ( 1 ... ( # ` B ) ) -onto-> B ) |
| 82 |
1
|
adantr |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> A C_ B ) |
| 83 |
|
foimacnv |
|- ( ( f : ( 1 ... ( # ` B ) ) -onto-> B /\ A C_ B ) -> ( f " ( `' f " A ) ) = A ) |
| 84 |
81 82 83
|
syl2anc |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( f " ( `' f " A ) ) = A ) |
| 85 |
84
|
f1oeq3d |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( ( f |` ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> ( f " ( `' f " A ) ) <-> ( f |` ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> A ) ) |
| 86 |
79 85
|
mpbid |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( f |` ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> A ) |
| 87 |
|
fvres |
|- ( n e. ( `' f " A ) -> ( ( f |` ( `' f " A ) ) ` n ) = ( f ` n ) ) |
| 88 |
87
|
adantl |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( `' f " A ) ) -> ( ( f |` ( `' f " A ) ) ` n ) = ( f ` n ) ) |
| 89 |
82
|
sselda |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ m e. A ) -> m e. B ) |
| 90 |
35
|
ffvelcdmda |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ m e. B ) -> ( ( k e. B |-> C ) ` m ) e. CC ) |
| 91 |
89 90
|
syldan |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ m e. A ) -> ( ( k e. B |-> C ) ` m ) e. CC ) |
| 92 |
73 75 86 88 91
|
fsumf1o |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> sum_ m e. A ( ( k e. B |-> C ) ` m ) = sum_ n e. ( `' f " A ) ( ( k e. B |-> C ) ` ( f ` n ) ) ) |
| 93 |
72 92
|
eqtrd |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> sum_ m e. A ( ( k e. A |-> C ) ` m ) = sum_ n e. ( `' f " A ) ( ( k e. B |-> C ) ` ( f ` n ) ) ) |
| 94 |
|
eqidd |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( 1 ... ( # ` B ) ) ) -> ( f ` n ) = ( f ` n ) ) |
| 95 |
73 74 14 94 90
|
fsumf1o |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> sum_ m e. B ( ( k e. B |-> C ) ` m ) = sum_ n e. ( 1 ... ( # ` B ) ) ( ( k e. B |-> C ) ` ( f ` n ) ) ) |
| 96 |
65 93 95
|
3eqtr4d |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> sum_ m e. A ( ( k e. A |-> C ) ` m ) = sum_ m e. B ( ( k e. B |-> C ) ` m ) ) |
| 97 |
|
sumfc |
|- sum_ m e. A ( ( k e. A |-> C ) ` m ) = sum_ k e. A C |
| 98 |
|
sumfc |
|- sum_ m e. B ( ( k e. B |-> C ) ` m ) = sum_ k e. B C |
| 99 |
96 97 98
|
3eqtr3g |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> sum_ k e. A C = sum_ k e. B C ) |
| 100 |
99
|
expr |
|- ( ( ph /\ ( # ` B ) e. NN ) -> ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B -> sum_ k e. A C = sum_ k e. B C ) ) |
| 101 |
100
|
exlimdv |
|- ( ( ph /\ ( # ` B ) e. NN ) -> ( E. f f : ( 1 ... ( # ` B ) ) -1-1-onto-> B -> sum_ k e. A C = sum_ k e. B C ) ) |
| 102 |
101
|
expimpd |
|- ( ph -> ( ( ( # ` B ) e. NN /\ E. f f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) -> sum_ k e. A C = sum_ k e. B C ) ) |
| 103 |
|
fz1f1o |
|- ( B e. Fin -> ( B = (/) \/ ( ( # ` B ) e. NN /\ E. f f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) ) |
| 104 |
4 103
|
syl |
|- ( ph -> ( B = (/) \/ ( ( # ` B ) e. NN /\ E. f f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) ) |
| 105 |
12 102 104
|
mpjaod |
|- ( ph -> sum_ k e. A C = sum_ k e. B C ) |