Step |
Hyp |
Ref |
Expression |
1 |
|
fsumneg.1 |
|- ( ph -> A e. Fin ) |
2 |
|
fsumneg.2 |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
3 |
|
fsumsub.3 |
|- ( ( ph /\ k e. A ) -> C e. CC ) |
4 |
3
|
negcld |
|- ( ( ph /\ k e. A ) -> -u C e. CC ) |
5 |
1 2 4
|
fsumadd |
|- ( ph -> sum_ k e. A ( B + -u C ) = ( sum_ k e. A B + sum_ k e. A -u C ) ) |
6 |
1 3
|
fsumneg |
|- ( ph -> sum_ k e. A -u C = -u sum_ k e. A C ) |
7 |
6
|
oveq2d |
|- ( ph -> ( sum_ k e. A B + sum_ k e. A -u C ) = ( sum_ k e. A B + -u sum_ k e. A C ) ) |
8 |
5 7
|
eqtrd |
|- ( ph -> sum_ k e. A ( B + -u C ) = ( sum_ k e. A B + -u sum_ k e. A C ) ) |
9 |
2 3
|
negsubd |
|- ( ( ph /\ k e. A ) -> ( B + -u C ) = ( B - C ) ) |
10 |
9
|
sumeq2dv |
|- ( ph -> sum_ k e. A ( B + -u C ) = sum_ k e. A ( B - C ) ) |
11 |
1 2
|
fsumcl |
|- ( ph -> sum_ k e. A B e. CC ) |
12 |
1 3
|
fsumcl |
|- ( ph -> sum_ k e. A C e. CC ) |
13 |
11 12
|
negsubd |
|- ( ph -> ( sum_ k e. A B + -u sum_ k e. A C ) = ( sum_ k e. A B - sum_ k e. A C ) ) |
14 |
8 10 13
|
3eqtr3d |
|- ( ph -> sum_ k e. A ( B - C ) = ( sum_ k e. A B - sum_ k e. A C ) ) |