Description: An upper bound for a term of a positive finite sum. (Contributed by Thierry Arnoux, 27-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumub.1 | |- ( k = K -> B = D ) |
|
| fsumub.2 | |- ( ph -> A e. Fin ) |
||
| fsumub.3 | |- ( ph -> sum_ k e. A B = C ) |
||
| fsumub.4 | |- ( ( ph /\ k e. A ) -> B e. RR+ ) |
||
| fsumub.k | |- ( ph -> K e. A ) |
||
| Assertion | fsumub | |- ( ph -> D <_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumub.1 | |- ( k = K -> B = D ) |
|
| 2 | fsumub.2 | |- ( ph -> A e. Fin ) |
|
| 3 | fsumub.3 | |- ( ph -> sum_ k e. A B = C ) |
|
| 4 | fsumub.4 | |- ( ( ph /\ k e. A ) -> B e. RR+ ) |
|
| 5 | fsumub.k | |- ( ph -> K e. A ) |
|
| 6 | 4 | rpred | |- ( ( ph /\ k e. A ) -> B e. RR ) |
| 7 | 4 | rpge0d | |- ( ( ph /\ k e. A ) -> 0 <_ B ) |
| 8 | 2 6 7 1 5 | fsumge1 | |- ( ph -> D <_ sum_ k e. A B ) |
| 9 | 8 3 | breqtrd | |- ( ph -> D <_ C ) |