Metamath Proof Explorer


Theorem fsumzcl

Description: Closure of a finite sum of integers. (Contributed by NM, 9-Nov-2005) (Revised by Mario Carneiro, 22-Apr-2014)

Ref Expression
Hypotheses fsumcl.1
|- ( ph -> A e. Fin )
fsumzcl.2
|- ( ( ph /\ k e. A ) -> B e. ZZ )
Assertion fsumzcl
|- ( ph -> sum_ k e. A B e. ZZ )

Proof

Step Hyp Ref Expression
1 fsumcl.1
 |-  ( ph -> A e. Fin )
2 fsumzcl.2
 |-  ( ( ph /\ k e. A ) -> B e. ZZ )
3 zsscn
 |-  ZZ C_ CC
4 3 a1i
 |-  ( ph -> ZZ C_ CC )
5 zaddcl
 |-  ( ( x e. ZZ /\ y e. ZZ ) -> ( x + y ) e. ZZ )
6 5 adantl
 |-  ( ( ph /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x + y ) e. ZZ )
7 0zd
 |-  ( ph -> 0 e. ZZ )
8 4 6 1 2 7 fsumcllem
 |-  ( ph -> sum_ k e. A B e. ZZ )