| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsuppco2.z |  |-  ( ph -> Z e. W ) | 
						
							| 2 |  | fsuppco2.f |  |-  ( ph -> F : A --> B ) | 
						
							| 3 |  | fsuppco2.g |  |-  ( ph -> G : B --> B ) | 
						
							| 4 |  | fsuppco2.a |  |-  ( ph -> A e. U ) | 
						
							| 5 |  | fsuppco2.b |  |-  ( ph -> B e. V ) | 
						
							| 6 |  | fsuppco2.n |  |-  ( ph -> F finSupp Z ) | 
						
							| 7 |  | fsuppco2.i |  |-  ( ph -> ( G ` Z ) = Z ) | 
						
							| 8 | 3 | ffund |  |-  ( ph -> Fun G ) | 
						
							| 9 | 2 | ffund |  |-  ( ph -> Fun F ) | 
						
							| 10 |  | funco |  |-  ( ( Fun G /\ Fun F ) -> Fun ( G o. F ) ) | 
						
							| 11 | 8 9 10 | syl2anc |  |-  ( ph -> Fun ( G o. F ) ) | 
						
							| 12 | 6 | fsuppimpd |  |-  ( ph -> ( F supp Z ) e. Fin ) | 
						
							| 13 |  | fco |  |-  ( ( G : B --> B /\ F : A --> B ) -> ( G o. F ) : A --> B ) | 
						
							| 14 | 3 2 13 | syl2anc |  |-  ( ph -> ( G o. F ) : A --> B ) | 
						
							| 15 |  | eldifi |  |-  ( x e. ( A \ ( F supp Z ) ) -> x e. A ) | 
						
							| 16 |  | fvco3 |  |-  ( ( F : A --> B /\ x e. A ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) | 
						
							| 17 | 2 15 16 | syl2an |  |-  ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) | 
						
							| 18 |  | ssidd |  |-  ( ph -> ( F supp Z ) C_ ( F supp Z ) ) | 
						
							| 19 | 2 18 4 1 | suppssr |  |-  ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( F ` x ) = Z ) | 
						
							| 20 | 19 | fveq2d |  |-  ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( G ` ( F ` x ) ) = ( G ` Z ) ) | 
						
							| 21 | 7 | adantr |  |-  ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( G ` Z ) = Z ) | 
						
							| 22 | 17 20 21 | 3eqtrd |  |-  ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( ( G o. F ) ` x ) = Z ) | 
						
							| 23 | 14 22 | suppss |  |-  ( ph -> ( ( G o. F ) supp Z ) C_ ( F supp Z ) ) | 
						
							| 24 | 12 23 | ssfid |  |-  ( ph -> ( ( G o. F ) supp Z ) e. Fin ) | 
						
							| 25 | 3 5 | fexd |  |-  ( ph -> G e. _V ) | 
						
							| 26 | 2 4 | fexd |  |-  ( ph -> F e. _V ) | 
						
							| 27 |  | coexg |  |-  ( ( G e. _V /\ F e. _V ) -> ( G o. F ) e. _V ) | 
						
							| 28 | 25 26 27 | syl2anc |  |-  ( ph -> ( G o. F ) e. _V ) | 
						
							| 29 |  | isfsupp |  |-  ( ( ( G o. F ) e. _V /\ Z e. W ) -> ( ( G o. F ) finSupp Z <-> ( Fun ( G o. F ) /\ ( ( G o. F ) supp Z ) e. Fin ) ) ) | 
						
							| 30 | 28 1 29 | syl2anc |  |-  ( ph -> ( ( G o. F ) finSupp Z <-> ( Fun ( G o. F ) /\ ( ( G o. F ) supp Z ) e. Fin ) ) ) | 
						
							| 31 | 11 24 30 | mpbir2and |  |-  ( ph -> ( G o. F ) finSupp Z ) |