Step |
Hyp |
Ref |
Expression |
1 |
|
fsuppcor.0 |
|- ( ph -> .0. e. W ) |
2 |
|
fsuppcor.z |
|- ( ph -> Z e. B ) |
3 |
|
fsuppcor.f |
|- ( ph -> F : A --> C ) |
4 |
|
fsuppcor.g |
|- ( ph -> G : B --> D ) |
5 |
|
fsuppcor.s |
|- ( ph -> C C_ B ) |
6 |
|
fsuppcor.a |
|- ( ph -> A e. U ) |
7 |
|
fsuppcor.b |
|- ( ph -> B e. V ) |
8 |
|
fsuppcor.n |
|- ( ph -> F finSupp Z ) |
9 |
|
fsuppcor.i |
|- ( ph -> ( G ` Z ) = .0. ) |
10 |
4
|
ffund |
|- ( ph -> Fun G ) |
11 |
3
|
ffund |
|- ( ph -> Fun F ) |
12 |
|
funco |
|- ( ( Fun G /\ Fun F ) -> Fun ( G o. F ) ) |
13 |
10 11 12
|
syl2anc |
|- ( ph -> Fun ( G o. F ) ) |
14 |
8
|
fsuppimpd |
|- ( ph -> ( F supp Z ) e. Fin ) |
15 |
4 5
|
fssresd |
|- ( ph -> ( G |` C ) : C --> D ) |
16 |
|
fco2 |
|- ( ( ( G |` C ) : C --> D /\ F : A --> C ) -> ( G o. F ) : A --> D ) |
17 |
15 3 16
|
syl2anc |
|- ( ph -> ( G o. F ) : A --> D ) |
18 |
|
eldifi |
|- ( x e. ( A \ ( F supp Z ) ) -> x e. A ) |
19 |
|
fvco3 |
|- ( ( F : A --> C /\ x e. A ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) |
20 |
3 18 19
|
syl2an |
|- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) |
21 |
|
ssidd |
|- ( ph -> ( F supp Z ) C_ ( F supp Z ) ) |
22 |
3 21 6 2
|
suppssr |
|- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( F ` x ) = Z ) |
23 |
22
|
fveq2d |
|- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( G ` ( F ` x ) ) = ( G ` Z ) ) |
24 |
9
|
adantr |
|- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( G ` Z ) = .0. ) |
25 |
20 23 24
|
3eqtrd |
|- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( ( G o. F ) ` x ) = .0. ) |
26 |
17 25
|
suppss |
|- ( ph -> ( ( G o. F ) supp .0. ) C_ ( F supp Z ) ) |
27 |
14 26
|
ssfid |
|- ( ph -> ( ( G o. F ) supp .0. ) e. Fin ) |
28 |
4 7
|
fexd |
|- ( ph -> G e. _V ) |
29 |
3 6
|
fexd |
|- ( ph -> F e. _V ) |
30 |
|
coexg |
|- ( ( G e. _V /\ F e. _V ) -> ( G o. F ) e. _V ) |
31 |
28 29 30
|
syl2anc |
|- ( ph -> ( G o. F ) e. _V ) |
32 |
|
isfsupp |
|- ( ( ( G o. F ) e. _V /\ .0. e. W ) -> ( ( G o. F ) finSupp .0. <-> ( Fun ( G o. F ) /\ ( ( G o. F ) supp .0. ) e. Fin ) ) ) |
33 |
31 1 32
|
syl2anc |
|- ( ph -> ( ( G o. F ) finSupp .0. <-> ( Fun ( G o. F ) /\ ( ( G o. F ) supp .0. ) e. Fin ) ) ) |
34 |
13 27 33
|
mpbir2and |
|- ( ph -> ( G o. F ) finSupp .0. ) |