Description: A finitely supported function is a function. (Contributed by SN, 8-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fsuppfund.1 | |- ( ph -> F finSupp Z ) | |
| Assertion | fsuppfund | |- ( ph -> Fun F ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fsuppfund.1 | |- ( ph -> F finSupp Z ) | |
| 2 | fsuppimp | |- ( F finSupp Z -> ( Fun F /\ ( F supp Z ) e. Fin ) ) | |
| 3 | 2 | simpld | |- ( F finSupp Z -> Fun F ) | 
| 4 | 1 3 | syl | |- ( ph -> Fun F ) |