Description: A finitely supported function is a function. (Contributed by SN, 8-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fsuppfund.1 | |- ( ph -> F finSupp Z ) |
|
Assertion | fsuppfund | |- ( ph -> Fun F ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppfund.1 | |- ( ph -> F finSupp Z ) |
|
2 | fsuppimp | |- ( F finSupp Z -> ( Fun F /\ ( F supp Z ) e. Fin ) ) |
|
3 | 2 | simpld | |- ( F finSupp Z -> Fun F ) |
4 | 1 3 | syl | |- ( ph -> Fun F ) |