Description: Implications of a class being a finitely supported function (in relation to a given zero). (Contributed by AV, 26-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | fsuppimp | |- ( R finSupp Z -> ( Fun R /\ ( R supp Z ) e. Fin ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relfsupp | |- Rel finSupp |
|
2 | 1 | brrelex12i | |- ( R finSupp Z -> ( R e. _V /\ Z e. _V ) ) |
3 | isfsupp | |- ( ( R e. _V /\ Z e. _V ) -> ( R finSupp Z <-> ( Fun R /\ ( R supp Z ) e. Fin ) ) ) |
|
4 | 3 | biimpd | |- ( ( R e. _V /\ Z e. _V ) -> ( R finSupp Z -> ( Fun R /\ ( R supp Z ) e. Fin ) ) ) |
5 | 2 4 | mpcom | |- ( R finSupp Z -> ( Fun R /\ ( R supp Z ) e. Fin ) ) |