Description: A finitely supported function is a function with a finite support. (Contributed by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fsuppimpd.f | |- ( ph -> F finSupp Z ) |
|
| Assertion | fsuppimpd | |- ( ph -> ( F supp Z ) e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppimpd.f | |- ( ph -> F finSupp Z ) |
|
| 2 | fsuppimp | |- ( F finSupp Z -> ( Fun F /\ ( F supp Z ) e. Fin ) ) |
|
| 3 | 2 | simprd | |- ( F finSupp Z -> ( F supp Z ) e. Fin ) |
| 4 | 1 3 | syl | |- ( ph -> ( F supp Z ) e. Fin ) |