Metamath Proof Explorer


Theorem fsuppind

Description: Induction on functions F : A --> B with finite support, or in other words the base set of the free module (see frlmelbas and frlmplusgval ). This theorem is structurally general for polynomial proof usage (see mplelbas and mpladd ). Note that hypothesis 0 is redundant when I is nonempty. (Contributed by SN, 18-May-2024)

Ref Expression
Hypotheses fsuppind.b
|- B = ( Base ` G )
fsuppind.z
|- .0. = ( 0g ` G )
fsuppind.p
|- .+ = ( +g ` G )
fsuppind.g
|- ( ph -> G e. Grp )
fsuppind.v
|- ( ph -> I e. V )
fsuppind.0
|- ( ph -> ( I X. { .0. } ) e. H )
fsuppind.1
|- ( ( ph /\ ( a e. I /\ b e. B ) ) -> ( x e. I |-> if ( x = a , b , .0. ) ) e. H )
fsuppind.2
|- ( ( ph /\ ( x e. H /\ y e. H ) ) -> ( x oF .+ y ) e. H )
Assertion fsuppind
|- ( ( ph /\ ( X : I --> B /\ X finSupp .0. ) ) -> X e. H )

Proof

Step Hyp Ref Expression
1 fsuppind.b
 |-  B = ( Base ` G )
2 fsuppind.z
 |-  .0. = ( 0g ` G )
3 fsuppind.p
 |-  .+ = ( +g ` G )
4 fsuppind.g
 |-  ( ph -> G e. Grp )
5 fsuppind.v
 |-  ( ph -> I e. V )
6 fsuppind.0
 |-  ( ph -> ( I X. { .0. } ) e. H )
7 fsuppind.1
 |-  ( ( ph /\ ( a e. I /\ b e. B ) ) -> ( x e. I |-> if ( x = a , b , .0. ) ) e. H )
8 fsuppind.2
 |-  ( ( ph /\ ( x e. H /\ y e. H ) ) -> ( x oF .+ y ) e. H )
9 1 fvexi
 |-  B e. _V
10 9 a1i
 |-  ( ph -> B e. _V )
11 10 5 elmapd
 |-  ( ph -> ( X e. ( B ^m I ) <-> X : I --> B ) )
12 11 adantr
 |-  ( ( ph /\ ( # ` ( X supp .0. ) ) e. NN ) -> ( X e. ( B ^m I ) <-> X : I --> B ) )
13 eqeq1
 |-  ( i = 1 -> ( i = ( # ` ( h supp .0. ) ) <-> 1 = ( # ` ( h supp .0. ) ) ) )
14 13 imbi1d
 |-  ( i = 1 -> ( ( i = ( # ` ( h supp .0. ) ) -> h e. H ) <-> ( 1 = ( # ` ( h supp .0. ) ) -> h e. H ) ) )
15 14 ralbidv
 |-  ( i = 1 -> ( A. h e. ( B ^m I ) ( i = ( # ` ( h supp .0. ) ) -> h e. H ) <-> A. h e. ( B ^m I ) ( 1 = ( # ` ( h supp .0. ) ) -> h e. H ) ) )
16 eqeq1
 |-  ( i = j -> ( i = ( # ` ( h supp .0. ) ) <-> j = ( # ` ( h supp .0. ) ) ) )
17 16 imbi1d
 |-  ( i = j -> ( ( i = ( # ` ( h supp .0. ) ) -> h e. H ) <-> ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) )
18 17 ralbidv
 |-  ( i = j -> ( A. h e. ( B ^m I ) ( i = ( # ` ( h supp .0. ) ) -> h e. H ) <-> A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) )
19 eqeq1
 |-  ( i = ( j + 1 ) -> ( i = ( # ` ( h supp .0. ) ) <-> ( j + 1 ) = ( # ` ( h supp .0. ) ) ) )
20 19 imbi1d
 |-  ( i = ( j + 1 ) -> ( ( i = ( # ` ( h supp .0. ) ) -> h e. H ) <-> ( ( j + 1 ) = ( # ` ( h supp .0. ) ) -> h e. H ) ) )
21 20 ralbidv
 |-  ( i = ( j + 1 ) -> ( A. h e. ( B ^m I ) ( i = ( # ` ( h supp .0. ) ) -> h e. H ) <-> A. h e. ( B ^m I ) ( ( j + 1 ) = ( # ` ( h supp .0. ) ) -> h e. H ) ) )
22 eqeq1
 |-  ( i = n -> ( i = ( # ` ( h supp .0. ) ) <-> n = ( # ` ( h supp .0. ) ) ) )
23 22 imbi1d
 |-  ( i = n -> ( ( i = ( # ` ( h supp .0. ) ) -> h e. H ) <-> ( n = ( # ` ( h supp .0. ) ) -> h e. H ) ) )
24 23 ralbidv
 |-  ( i = n -> ( A. h e. ( B ^m I ) ( i = ( # ` ( h supp .0. ) ) -> h e. H ) <-> A. h e. ( B ^m I ) ( n = ( # ` ( h supp .0. ) ) -> h e. H ) ) )
25 eqcom
 |-  ( 1 = ( # ` ( h supp .0. ) ) <-> ( # ` ( h supp .0. ) ) = 1 )
26 ovex
 |-  ( h supp .0. ) e. _V
27 euhash1
 |-  ( ( h supp .0. ) e. _V -> ( ( # ` ( h supp .0. ) ) = 1 <-> E! c c e. ( h supp .0. ) ) )
28 26 27 ax-mp
 |-  ( ( # ` ( h supp .0. ) ) = 1 <-> E! c c e. ( h supp .0. ) )
29 25 28 bitri
 |-  ( 1 = ( # ` ( h supp .0. ) ) <-> E! c c e. ( h supp .0. ) )
30 elmapfn
 |-  ( h e. ( B ^m I ) -> h Fn I )
31 30 adantl
 |-  ( ( ph /\ h e. ( B ^m I ) ) -> h Fn I )
32 5 adantr
 |-  ( ( ph /\ h e. ( B ^m I ) ) -> I e. V )
33 2 fvexi
 |-  .0. e. _V
34 33 a1i
 |-  ( ( ph /\ h e. ( B ^m I ) ) -> .0. e. _V )
35 elsuppfn
 |-  ( ( h Fn I /\ I e. V /\ .0. e. _V ) -> ( c e. ( h supp .0. ) <-> ( c e. I /\ ( h ` c ) =/= .0. ) ) )
36 31 32 34 35 syl3anc
 |-  ( ( ph /\ h e. ( B ^m I ) ) -> ( c e. ( h supp .0. ) <-> ( c e. I /\ ( h ` c ) =/= .0. ) ) )
37 36 eubidv
 |-  ( ( ph /\ h e. ( B ^m I ) ) -> ( E! c c e. ( h supp .0. ) <-> E! c ( c e. I /\ ( h ` c ) =/= .0. ) ) )
38 df-reu
 |-  ( E! c e. I ( h ` c ) =/= .0. <-> E! c ( c e. I /\ ( h ` c ) =/= .0. ) )
39 37 38 bitr4di
 |-  ( ( ph /\ h e. ( B ^m I ) ) -> ( E! c c e. ( h supp .0. ) <-> E! c e. I ( h ` c ) =/= .0. ) )
40 30 ad2antlr
 |-  ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) -> h Fn I )
41 fvex
 |-  ( h ` x ) e. _V
42 41 33 ifex
 |-  if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) e. _V
43 eqid
 |-  ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) ) = ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) )
44 42 43 fnmpti
 |-  ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) ) Fn I
45 44 a1i
 |-  ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) -> ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) ) Fn I )
46 eqeq1
 |-  ( x = v -> ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) <-> v = ( iota_ c e. I ( h ` c ) =/= .0. ) ) )
47 fveq2
 |-  ( x = v -> ( h ` x ) = ( h ` v ) )
48 46 47 ifbieq1d
 |-  ( x = v -> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) = if ( v = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` v ) , .0. ) )
49 48 43 42 fvmpt3i
 |-  ( v e. I -> ( ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) ) ` v ) = if ( v = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` v ) , .0. ) )
50 49 adantl
 |-  ( ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) /\ v e. I ) -> ( ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) ) ` v ) = if ( v = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` v ) , .0. ) )
51 eqidd
 |-  ( ( ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) /\ v e. I ) /\ v = ( iota_ c e. I ( h ` c ) =/= .0. ) ) -> ( h ` v ) = ( h ` v ) )
52 simpr
 |-  ( ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) /\ v e. I ) -> v e. I )
53 simplr
 |-  ( ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) /\ v e. I ) -> E! c e. I ( h ` c ) =/= .0. )
54 fveq2
 |-  ( c = v -> ( h ` c ) = ( h ` v ) )
55 54 neeq1d
 |-  ( c = v -> ( ( h ` c ) =/= .0. <-> ( h ` v ) =/= .0. ) )
56 55 riota2
 |-  ( ( v e. I /\ E! c e. I ( h ` c ) =/= .0. ) -> ( ( h ` v ) =/= .0. <-> ( iota_ c e. I ( h ` c ) =/= .0. ) = v ) )
57 52 53 56 syl2anc
 |-  ( ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) /\ v e. I ) -> ( ( h ` v ) =/= .0. <-> ( iota_ c e. I ( h ` c ) =/= .0. ) = v ) )
58 necom
 |-  ( .0. =/= ( h ` v ) <-> ( h ` v ) =/= .0. )
59 eqcom
 |-  ( v = ( iota_ c e. I ( h ` c ) =/= .0. ) <-> ( iota_ c e. I ( h ` c ) =/= .0. ) = v )
60 57 58 59 3bitr4g
 |-  ( ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) /\ v e. I ) -> ( .0. =/= ( h ` v ) <-> v = ( iota_ c e. I ( h ` c ) =/= .0. ) ) )
61 60 biimpd
 |-  ( ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) /\ v e. I ) -> ( .0. =/= ( h ` v ) -> v = ( iota_ c e. I ( h ` c ) =/= .0. ) ) )
62 61 necon1bd
 |-  ( ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) /\ v e. I ) -> ( -. v = ( iota_ c e. I ( h ` c ) =/= .0. ) -> .0. = ( h ` v ) ) )
63 62 imp
 |-  ( ( ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) /\ v e. I ) /\ -. v = ( iota_ c e. I ( h ` c ) =/= .0. ) ) -> .0. = ( h ` v ) )
64 51 63 ifeqda
 |-  ( ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) /\ v e. I ) -> if ( v = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` v ) , .0. ) = ( h ` v ) )
65 50 64 eqtr2d
 |-  ( ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) /\ v e. I ) -> ( h ` v ) = ( ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) ) ` v ) )
66 40 45 65 eqfnfvd
 |-  ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) -> h = ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) ) )
67 riotacl
 |-  ( E! c e. I ( h ` c ) =/= .0. -> ( iota_ c e. I ( h ` c ) =/= .0. ) e. I )
68 67 adantl
 |-  ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) -> ( iota_ c e. I ( h ` c ) =/= .0. ) e. I )
69 elmapi
 |-  ( h e. ( B ^m I ) -> h : I --> B )
70 69 ad2antlr
 |-  ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) -> h : I --> B )
71 70 68 ffvelcdmd
 |-  ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) -> ( h ` ( iota_ c e. I ( h ` c ) =/= .0. ) ) e. B )
72 7 ralrimivva
 |-  ( ph -> A. a e. I A. b e. B ( x e. I |-> if ( x = a , b , .0. ) ) e. H )
73 72 ad2antrr
 |-  ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) -> A. a e. I A. b e. B ( x e. I |-> if ( x = a , b , .0. ) ) e. H )
74 eqeq2
 |-  ( a = ( iota_ c e. I ( h ` c ) =/= .0. ) -> ( x = a <-> x = ( iota_ c e. I ( h ` c ) =/= .0. ) ) )
75 74 ifbid
 |-  ( a = ( iota_ c e. I ( h ` c ) =/= .0. ) -> if ( x = a , b , .0. ) = if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , b , .0. ) )
76 75 mpteq2dv
 |-  ( a = ( iota_ c e. I ( h ` c ) =/= .0. ) -> ( x e. I |-> if ( x = a , b , .0. ) ) = ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , b , .0. ) ) )
77 76 eleq1d
 |-  ( a = ( iota_ c e. I ( h ` c ) =/= .0. ) -> ( ( x e. I |-> if ( x = a , b , .0. ) ) e. H <-> ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , b , .0. ) ) e. H ) )
78 fveq2
 |-  ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) -> ( h ` x ) = ( h ` ( iota_ c e. I ( h ` c ) =/= .0. ) ) )
79 78 eqeq2d
 |-  ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) -> ( b = ( h ` x ) <-> b = ( h ` ( iota_ c e. I ( h ` c ) =/= .0. ) ) ) )
80 79 biimparc
 |-  ( ( b = ( h ` ( iota_ c e. I ( h ` c ) =/= .0. ) ) /\ x = ( iota_ c e. I ( h ` c ) =/= .0. ) ) -> b = ( h ` x ) )
81 80 ifeq1da
 |-  ( b = ( h ` ( iota_ c e. I ( h ` c ) =/= .0. ) ) -> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , b , .0. ) = if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) )
82 81 mpteq2dv
 |-  ( b = ( h ` ( iota_ c e. I ( h ` c ) =/= .0. ) ) -> ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , b , .0. ) ) = ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) ) )
83 82 eleq1d
 |-  ( b = ( h ` ( iota_ c e. I ( h ` c ) =/= .0. ) ) -> ( ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , b , .0. ) ) e. H <-> ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) ) e. H ) )
84 77 83 rspc2va
 |-  ( ( ( ( iota_ c e. I ( h ` c ) =/= .0. ) e. I /\ ( h ` ( iota_ c e. I ( h ` c ) =/= .0. ) ) e. B ) /\ A. a e. I A. b e. B ( x e. I |-> if ( x = a , b , .0. ) ) e. H ) -> ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) ) e. H )
85 68 71 73 84 syl21anc
 |-  ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) -> ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) ) e. H )
86 66 85 eqeltrd
 |-  ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) -> h e. H )
87 86 ex
 |-  ( ( ph /\ h e. ( B ^m I ) ) -> ( E! c e. I ( h ` c ) =/= .0. -> h e. H ) )
88 39 87 sylbid
 |-  ( ( ph /\ h e. ( B ^m I ) ) -> ( E! c c e. ( h supp .0. ) -> h e. H ) )
89 29 88 biimtrid
 |-  ( ( ph /\ h e. ( B ^m I ) ) -> ( 1 = ( # ` ( h supp .0. ) ) -> h e. H ) )
90 89 ralrimiva
 |-  ( ph -> A. h e. ( B ^m I ) ( 1 = ( # ` ( h supp .0. ) ) -> h e. H ) )
91 fvoveq1
 |-  ( m = ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) -> ( # ` ( m supp .0. ) ) = ( # ` ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) ) )
92 91 eqeq2d
 |-  ( m = ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) -> ( j = ( # ` ( m supp .0. ) ) <-> j = ( # ` ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) ) ) )
93 oveq1
 |-  ( m = ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) -> ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) = ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) )
94 93 eqeq2d
 |-  ( m = ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) -> ( l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) <-> l = ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) )
95 92 94 anbi12d
 |-  ( m = ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) -> ( ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) <-> ( j = ( # ` ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) ) /\ l = ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) )
96 1 2 grpidcl
 |-  ( G e. Grp -> .0. e. B )
97 4 96 syl
 |-  ( ph -> .0. e. B )
98 97 ad5antr
 |-  ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ x e. I ) -> .0. e. B )
99 eqid
 |-  ( B ^m I ) = ( B ^m I )
100 simprl
 |-  ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> l e. ( B ^m I ) )
101 100 ad2antrr
 |-  ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ x e. I ) -> l e. ( B ^m I ) )
102 simpr
 |-  ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ x e. I ) -> x e. I )
103 99 101 102 mapfvd
 |-  ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ x e. I ) -> ( l ` x ) e. B )
104 98 103 ifcld
 |-  ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ x e. I ) -> if ( x = z , .0. , ( l ` x ) ) e. B )
105 104 fmpttd
 |-  ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) : I --> B )
106 9 a1i
 |-  ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> B e. _V )
107 5 ad4antr
 |-  ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> I e. V )
108 106 107 elmapd
 |-  ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) e. ( B ^m I ) <-> ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) : I --> B ) )
109 105 108 mpbird
 |-  ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) e. ( B ^m I ) )
110 109 adantrl
 |-  ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) e. ( B ^m I ) )
111 ovexd
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> ( l supp .0. ) e. _V )
112 simprl
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> z e. I )
113 simprr
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> ( l ` z ) =/= .0. )
114 elmapfn
 |-  ( l e. ( B ^m I ) -> l Fn I )
115 114 ad2antrl
 |-  ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> l Fn I )
116 115 adantr
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> l Fn I )
117 5 ad3antrrr
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> I e. V )
118 33 a1i
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> .0. e. _V )
119 elsuppfn
 |-  ( ( l Fn I /\ I e. V /\ .0. e. _V ) -> ( z e. ( l supp .0. ) <-> ( z e. I /\ ( l ` z ) =/= .0. ) ) )
120 116 117 118 119 syl3anc
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> ( z e. ( l supp .0. ) <-> ( z e. I /\ ( l ` z ) =/= .0. ) ) )
121 112 113 120 mpbir2and
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> z e. ( l supp .0. ) )
122 simpllr
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> j e. NN )
123 122 nnnn0d
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> j e. NN0 )
124 simplrr
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> ( j + 1 ) = ( # ` ( l supp .0. ) ) )
125 124 eqcomd
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> ( # ` ( l supp .0. ) ) = ( j + 1 ) )
126 hashdifsnp1
 |-  ( ( ( l supp .0. ) e. _V /\ z e. ( l supp .0. ) /\ j e. NN0 ) -> ( ( # ` ( l supp .0. ) ) = ( j + 1 ) -> ( # ` ( ( l supp .0. ) \ { z } ) ) = j ) )
127 126 imp
 |-  ( ( ( ( l supp .0. ) e. _V /\ z e. ( l supp .0. ) /\ j e. NN0 ) /\ ( # ` ( l supp .0. ) ) = ( j + 1 ) ) -> ( # ` ( ( l supp .0. ) \ { z } ) ) = j )
128 111 121 123 125 127 syl31anc
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> ( # ` ( ( l supp .0. ) \ { z } ) ) = j )
129 eldifsn
 |-  ( v e. ( ( l supp .0. ) \ { z } ) <-> ( v e. ( l supp .0. ) /\ v =/= z ) )
130 fvex
 |-  ( l ` x ) e. _V
131 33 130 ifex
 |-  if ( x = z , .0. , ( l ` x ) ) e. _V
132 eqid
 |-  ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) = ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) )
133 131 132 fnmpti
 |-  ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) Fn I
134 133 a1i
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) Fn I )
135 5 ad3antrrr
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> I e. V )
136 33 a1i
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> .0. e. _V )
137 elsuppfn
 |-  ( ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) Fn I /\ I e. V /\ .0. e. _V ) -> ( v e. ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) <-> ( v e. I /\ ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) ` v ) =/= .0. ) ) )
138 134 135 136 137 syl3anc
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( v e. ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) <-> ( v e. I /\ ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) ` v ) =/= .0. ) ) )
139 iftrue
 |-  ( v = z -> if ( v = z , .0. , ( l ` v ) ) = .0. )
140 olc
 |-  ( v = z -> ( ( l ` v ) = .0. \/ v = z ) )
141 139 140 2thd
 |-  ( v = z -> ( if ( v = z , .0. , ( l ` v ) ) = .0. <-> ( ( l ` v ) = .0. \/ v = z ) ) )
142 iffalse
 |-  ( -. v = z -> if ( v = z , .0. , ( l ` v ) ) = ( l ` v ) )
143 142 eqeq1d
 |-  ( -. v = z -> ( if ( v = z , .0. , ( l ` v ) ) = .0. <-> ( l ` v ) = .0. ) )
144 biorf
 |-  ( -. v = z -> ( ( l ` v ) = .0. <-> ( v = z \/ ( l ` v ) = .0. ) ) )
145 orcom
 |-  ( ( ( l ` v ) = .0. \/ v = z ) <-> ( v = z \/ ( l ` v ) = .0. ) )
146 144 145 bitr4di
 |-  ( -. v = z -> ( ( l ` v ) = .0. <-> ( ( l ` v ) = .0. \/ v = z ) ) )
147 143 146 bitrd
 |-  ( -. v = z -> ( if ( v = z , .0. , ( l ` v ) ) = .0. <-> ( ( l ` v ) = .0. \/ v = z ) ) )
148 141 147 pm2.61i
 |-  ( if ( v = z , .0. , ( l ` v ) ) = .0. <-> ( ( l ` v ) = .0. \/ v = z ) )
149 148 a1i
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( if ( v = z , .0. , ( l ` v ) ) = .0. <-> ( ( l ` v ) = .0. \/ v = z ) ) )
150 149 necon3abid
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( if ( v = z , .0. , ( l ` v ) ) =/= .0. <-> -. ( ( l ` v ) = .0. \/ v = z ) ) )
151 neanior
 |-  ( ( ( l ` v ) =/= .0. /\ v =/= z ) <-> -. ( ( l ` v ) = .0. \/ v = z ) )
152 150 151 bitr4di
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( if ( v = z , .0. , ( l ` v ) ) =/= .0. <-> ( ( l ` v ) =/= .0. /\ v =/= z ) ) )
153 152 anbi2d
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( ( v e. I /\ if ( v = z , .0. , ( l ` v ) ) =/= .0. ) <-> ( v e. I /\ ( ( l ` v ) =/= .0. /\ v =/= z ) ) ) )
154 anass
 |-  ( ( ( v e. I /\ ( l ` v ) =/= .0. ) /\ v =/= z ) <-> ( v e. I /\ ( ( l ` v ) =/= .0. /\ v =/= z ) ) )
155 153 154 bitr4di
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( ( v e. I /\ if ( v = z , .0. , ( l ` v ) ) =/= .0. ) <-> ( ( v e. I /\ ( l ` v ) =/= .0. ) /\ v =/= z ) ) )
156 equequ1
 |-  ( x = v -> ( x = z <-> v = z ) )
157 fveq2
 |-  ( x = v -> ( l ` x ) = ( l ` v ) )
158 156 157 ifbieq2d
 |-  ( x = v -> if ( x = z , .0. , ( l ` x ) ) = if ( v = z , .0. , ( l ` v ) ) )
159 158 132 131 fvmpt3i
 |-  ( v e. I -> ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) ` v ) = if ( v = z , .0. , ( l ` v ) ) )
160 159 adantl
 |-  ( ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ v e. I ) -> ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) ` v ) = if ( v = z , .0. , ( l ` v ) ) )
161 160 neeq1d
 |-  ( ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ v e. I ) -> ( ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) ` v ) =/= .0. <-> if ( v = z , .0. , ( l ` v ) ) =/= .0. ) )
162 161 pm5.32da
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( ( v e. I /\ ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) ` v ) =/= .0. ) <-> ( v e. I /\ if ( v = z , .0. , ( l ` v ) ) =/= .0. ) ) )
163 115 adantr
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> l Fn I )
164 elsuppfn
 |-  ( ( l Fn I /\ I e. V /\ .0. e. _V ) -> ( v e. ( l supp .0. ) <-> ( v e. I /\ ( l ` v ) =/= .0. ) ) )
165 163 135 136 164 syl3anc
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( v e. ( l supp .0. ) <-> ( v e. I /\ ( l ` v ) =/= .0. ) ) )
166 165 anbi1d
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( ( v e. ( l supp .0. ) /\ v =/= z ) <-> ( ( v e. I /\ ( l ` v ) =/= .0. ) /\ v =/= z ) ) )
167 155 162 166 3bitr4d
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( ( v e. I /\ ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) ` v ) =/= .0. ) <-> ( v e. ( l supp .0. ) /\ v =/= z ) ) )
168 138 167 bitr2d
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( ( v e. ( l supp .0. ) /\ v =/= z ) <-> v e. ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) ) )
169 129 168 bitrid
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( v e. ( ( l supp .0. ) \ { z } ) <-> v e. ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) ) )
170 169 eqrdv
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( ( l supp .0. ) \ { z } ) = ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) )
171 170 fveq2d
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( # ` ( ( l supp .0. ) \ { z } ) ) = ( # ` ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) ) )
172 171 adantrl
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> ( # ` ( ( l supp .0. ) \ { z } ) ) = ( # ` ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) ) )
173 128 172 eqtr3d
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> j = ( # ` ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) ) )
174 130 33 ifex
 |-  if ( x = z , ( l ` x ) , .0. ) e. _V
175 eqid
 |-  ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) = ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) )
176 174 175 fnmpti
 |-  ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) Fn I
177 176 a1i
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) Fn I )
178 inidm
 |-  ( I i^i I ) = I
179 134 177 135 135 178 offn
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) Fn I )
180 156 157 ifbieq1d
 |-  ( x = v -> if ( x = z , ( l ` x ) , .0. ) = if ( v = z , ( l ` v ) , .0. ) )
181 180 175 174 fvmpt3i
 |-  ( v e. I -> ( ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ` v ) = if ( v = z , ( l ` v ) , .0. ) )
182 181 adantl
 |-  ( ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ v e. I ) -> ( ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ` v ) = if ( v = z , ( l ` v ) , .0. ) )
183 134 177 135 135 178 160 182 ofval
 |-  ( ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ v e. I ) -> ( ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ` v ) = ( if ( v = z , .0. , ( l ` v ) ) .+ if ( v = z , ( l ` v ) , .0. ) ) )
184 4 ad4antr
 |-  ( ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ v e. I ) -> G e. Grp )
185 simplrl
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( ( l ` z ) =/= .0. /\ v e. I ) ) -> l e. ( B ^m I ) )
186 185 anassrs
 |-  ( ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ v e. I ) -> l e. ( B ^m I ) )
187 simpr
 |-  ( ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ v e. I ) -> v e. I )
188 99 186 187 mapfvd
 |-  ( ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ v e. I ) -> ( l ` v ) e. B )
189 1 3 2 grplid
 |-  ( ( G e. Grp /\ ( l ` v ) e. B ) -> ( .0. .+ ( l ` v ) ) = ( l ` v ) )
190 1 3 2 grprid
 |-  ( ( G e. Grp /\ ( l ` v ) e. B ) -> ( ( l ` v ) .+ .0. ) = ( l ` v ) )
191 189 190 ifeq12d
 |-  ( ( G e. Grp /\ ( l ` v ) e. B ) -> if ( v = z , ( .0. .+ ( l ` v ) ) , ( ( l ` v ) .+ .0. ) ) = if ( v = z , ( l ` v ) , ( l ` v ) ) )
192 184 188 191 syl2anc
 |-  ( ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ v e. I ) -> if ( v = z , ( .0. .+ ( l ` v ) ) , ( ( l ` v ) .+ .0. ) ) = if ( v = z , ( l ` v ) , ( l ` v ) ) )
193 ovif12
 |-  ( if ( v = z , .0. , ( l ` v ) ) .+ if ( v = z , ( l ` v ) , .0. ) ) = if ( v = z , ( .0. .+ ( l ` v ) ) , ( ( l ` v ) .+ .0. ) )
194 ifid
 |-  if ( v = z , ( l ` v ) , ( l ` v ) ) = ( l ` v )
195 194 eqcomi
 |-  ( l ` v ) = if ( v = z , ( l ` v ) , ( l ` v ) )
196 192 193 195 3eqtr4g
 |-  ( ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ v e. I ) -> ( if ( v = z , .0. , ( l ` v ) ) .+ if ( v = z , ( l ` v ) , .0. ) ) = ( l ` v ) )
197 183 196 eqtr2d
 |-  ( ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ v e. I ) -> ( l ` v ) = ( ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ` v ) )
198 163 179 197 eqfnfvd
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> l = ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) )
199 198 adantrl
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> l = ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) )
200 173 199 jca
 |-  ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> ( j = ( # ` ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) ) /\ l = ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) )
201 200 adantllr
 |-  ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> ( j = ( # ` ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) ) /\ l = ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) )
202 95 110 201 rspcedvdw
 |-  ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> E. m e. ( B ^m I ) ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) )
203 114 ad2antrl
 |-  ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> l Fn I )
204 5 ad3antrrr
 |-  ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> I e. V )
205 33 a1i
 |-  ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> .0. e. _V )
206 suppvalfn
 |-  ( ( l Fn I /\ I e. V /\ .0. e. _V ) -> ( l supp .0. ) = { z e. I | ( l ` z ) =/= .0. } )
207 203 204 205 206 syl3anc
 |-  ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> ( l supp .0. ) = { z e. I | ( l ` z ) =/= .0. } )
208 simprr
 |-  ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> ( j + 1 ) = ( # ` ( l supp .0. ) ) )
209 peano2nn
 |-  ( j e. NN -> ( j + 1 ) e. NN )
210 209 ad3antlr
 |-  ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> ( j + 1 ) e. NN )
211 210 nnne0d
 |-  ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> ( j + 1 ) =/= 0 )
212 208 211 eqnetrrd
 |-  ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> ( # ` ( l supp .0. ) ) =/= 0 )
213 ovex
 |-  ( l supp .0. ) e. _V
214 hasheq0
 |-  ( ( l supp .0. ) e. _V -> ( ( # ` ( l supp .0. ) ) = 0 <-> ( l supp .0. ) = (/) ) )
215 214 necon3bid
 |-  ( ( l supp .0. ) e. _V -> ( ( # ` ( l supp .0. ) ) =/= 0 <-> ( l supp .0. ) =/= (/) ) )
216 213 215 mp1i
 |-  ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> ( ( # ` ( l supp .0. ) ) =/= 0 <-> ( l supp .0. ) =/= (/) ) )
217 212 216 mpbid
 |-  ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> ( l supp .0. ) =/= (/) )
218 207 217 eqnetrrd
 |-  ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> { z e. I | ( l ` z ) =/= .0. } =/= (/) )
219 rabn0
 |-  ( { z e. I | ( l ` z ) =/= .0. } =/= (/) <-> E. z e. I ( l ` z ) =/= .0. )
220 218 219 sylib
 |-  ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> E. z e. I ( l ` z ) =/= .0. )
221 202 220 reximddv
 |-  ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> E. z e. I E. m e. ( B ^m I ) ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) )
222 rexcom
 |-  ( E. z e. I E. m e. ( B ^m I ) ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) <-> E. m e. ( B ^m I ) E. z e. I ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) )
223 221 222 sylib
 |-  ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> E. m e. ( B ^m I ) E. z e. I ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) )
224 simprr
 |-  ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( m e. ( B ^m I ) /\ z e. I ) ) /\ ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) -> l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) )
225 fvoveq1
 |-  ( h = m -> ( # ` ( h supp .0. ) ) = ( # ` ( m supp .0. ) ) )
226 225 eqeq2d
 |-  ( h = m -> ( j = ( # ` ( h supp .0. ) ) <-> j = ( # ` ( m supp .0. ) ) ) )
227 eleq1w
 |-  ( h = m -> ( h e. H <-> m e. H ) )
228 226 227 imbi12d
 |-  ( h = m -> ( ( j = ( # ` ( h supp .0. ) ) -> h e. H ) <-> ( j = ( # ` ( m supp .0. ) ) -> m e. H ) ) )
229 228 rspccva
 |-  ( ( A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) /\ m e. ( B ^m I ) ) -> ( j = ( # ` ( m supp .0. ) ) -> m e. H ) )
230 229 adantll
 |-  ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ m e. ( B ^m I ) ) -> ( j = ( # ` ( m supp .0. ) ) -> m e. H ) )
231 230 imp
 |-  ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ m e. ( B ^m I ) ) /\ j = ( # ` ( m supp .0. ) ) ) -> m e. H )
232 231 adantllr
 |-  ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ m e. ( B ^m I ) ) /\ j = ( # ` ( m supp .0. ) ) ) -> m e. H )
233 232 adantlrr
 |-  ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( m e. ( B ^m I ) /\ z e. I ) ) /\ j = ( # ` ( m supp .0. ) ) ) -> m e. H )
234 233 adantrr
 |-  ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( m e. ( B ^m I ) /\ z e. I ) ) /\ ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) -> m e. H )
235 simplrr
 |-  ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( m e. ( B ^m I ) /\ z e. I ) ) /\ ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) -> z e. I )
236 100 ad2antrr
 |-  ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( m e. ( B ^m I ) /\ z e. I ) ) /\ ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) -> l e. ( B ^m I ) )
237 99 236 235 mapfvd
 |-  ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( m e. ( B ^m I ) /\ z e. I ) ) /\ ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) -> ( l ` z ) e. B )
238 72 ad5antr
 |-  ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( m e. ( B ^m I ) /\ z e. I ) ) /\ ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) -> A. a e. I A. b e. B ( x e. I |-> if ( x = a , b , .0. ) ) e. H )
239 equequ2
 |-  ( a = z -> ( x = a <-> x = z ) )
240 239 ifbid
 |-  ( a = z -> if ( x = a , b , .0. ) = if ( x = z , b , .0. ) )
241 240 mpteq2dv
 |-  ( a = z -> ( x e. I |-> if ( x = a , b , .0. ) ) = ( x e. I |-> if ( x = z , b , .0. ) ) )
242 241 eleq1d
 |-  ( a = z -> ( ( x e. I |-> if ( x = a , b , .0. ) ) e. H <-> ( x e. I |-> if ( x = z , b , .0. ) ) e. H ) )
243 fveq2
 |-  ( x = z -> ( l ` x ) = ( l ` z ) )
244 243 eqeq2d
 |-  ( x = z -> ( b = ( l ` x ) <-> b = ( l ` z ) ) )
245 244 biimparc
 |-  ( ( b = ( l ` z ) /\ x = z ) -> b = ( l ` x ) )
246 245 ifeq1da
 |-  ( b = ( l ` z ) -> if ( x = z , b , .0. ) = if ( x = z , ( l ` x ) , .0. ) )
247 246 mpteq2dv
 |-  ( b = ( l ` z ) -> ( x e. I |-> if ( x = z , b , .0. ) ) = ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) )
248 247 eleq1d
 |-  ( b = ( l ` z ) -> ( ( x e. I |-> if ( x = z , b , .0. ) ) e. H <-> ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) e. H ) )
249 242 248 rspc2va
 |-  ( ( ( z e. I /\ ( l ` z ) e. B ) /\ A. a e. I A. b e. B ( x e. I |-> if ( x = a , b , .0. ) ) e. H ) -> ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) e. H )
250 235 237 238 249 syl21anc
 |-  ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( m e. ( B ^m I ) /\ z e. I ) ) /\ ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) -> ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) e. H )
251 8 ralrimivva
 |-  ( ph -> A. x e. H A. y e. H ( x oF .+ y ) e. H )
252 251 ad5antr
 |-  ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( m e. ( B ^m I ) /\ z e. I ) ) /\ ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) -> A. x e. H A. y e. H ( x oF .+ y ) e. H )
253 ovrspc2v
 |-  ( ( ( m e. H /\ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) e. H ) /\ A. x e. H A. y e. H ( x oF .+ y ) e. H ) -> ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) e. H )
254 234 250 252 253 syl21anc
 |-  ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( m e. ( B ^m I ) /\ z e. I ) ) /\ ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) -> ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) e. H )
255 224 254 eqeltrd
 |-  ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( m e. ( B ^m I ) /\ z e. I ) ) /\ ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) -> l e. H )
256 255 ex
 |-  ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( m e. ( B ^m I ) /\ z e. I ) ) -> ( ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) -> l e. H ) )
257 256 rexlimdvva
 |-  ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> ( E. m e. ( B ^m I ) E. z e. I ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) -> l e. H ) )
258 223 257 mpd
 |-  ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> l e. H )
259 258 exp32
 |-  ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) -> ( l e. ( B ^m I ) -> ( ( j + 1 ) = ( # ` ( l supp .0. ) ) -> l e. H ) ) )
260 259 ralrimiv
 |-  ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) -> A. l e. ( B ^m I ) ( ( j + 1 ) = ( # ` ( l supp .0. ) ) -> l e. H ) )
261 fvoveq1
 |-  ( l = h -> ( # ` ( l supp .0. ) ) = ( # ` ( h supp .0. ) ) )
262 261 eqeq2d
 |-  ( l = h -> ( ( j + 1 ) = ( # ` ( l supp .0. ) ) <-> ( j + 1 ) = ( # ` ( h supp .0. ) ) ) )
263 eleq1w
 |-  ( l = h -> ( l e. H <-> h e. H ) )
264 262 263 imbi12d
 |-  ( l = h -> ( ( ( j + 1 ) = ( # ` ( l supp .0. ) ) -> l e. H ) <-> ( ( j + 1 ) = ( # ` ( h supp .0. ) ) -> h e. H ) ) )
265 264 cbvralvw
 |-  ( A. l e. ( B ^m I ) ( ( j + 1 ) = ( # ` ( l supp .0. ) ) -> l e. H ) <-> A. h e. ( B ^m I ) ( ( j + 1 ) = ( # ` ( h supp .0. ) ) -> h e. H ) )
266 260 265 sylib
 |-  ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) -> A. h e. ( B ^m I ) ( ( j + 1 ) = ( # ` ( h supp .0. ) ) -> h e. H ) )
267 15 18 21 24 90 266 nnindd
 |-  ( ( ph /\ n e. NN ) -> A. h e. ( B ^m I ) ( n = ( # ` ( h supp .0. ) ) -> h e. H ) )
268 267 ralrimiva
 |-  ( ph -> A. n e. NN A. h e. ( B ^m I ) ( n = ( # ` ( h supp .0. ) ) -> h e. H ) )
269 ralcom
 |-  ( A. n e. NN A. h e. ( B ^m I ) ( n = ( # ` ( h supp .0. ) ) -> h e. H ) <-> A. h e. ( B ^m I ) A. n e. NN ( n = ( # ` ( h supp .0. ) ) -> h e. H ) )
270 268 269 sylib
 |-  ( ph -> A. h e. ( B ^m I ) A. n e. NN ( n = ( # ` ( h supp .0. ) ) -> h e. H ) )
271 biidd
 |-  ( n = ( # ` ( h supp .0. ) ) -> ( h e. H <-> h e. H ) )
272 271 ceqsralv
 |-  ( ( # ` ( h supp .0. ) ) e. NN -> ( A. n e. NN ( n = ( # ` ( h supp .0. ) ) -> h e. H ) <-> h e. H ) )
273 272 biimpcd
 |-  ( A. n e. NN ( n = ( # ` ( h supp .0. ) ) -> h e. H ) -> ( ( # ` ( h supp .0. ) ) e. NN -> h e. H ) )
274 273 ralimi
 |-  ( A. h e. ( B ^m I ) A. n e. NN ( n = ( # ` ( h supp .0. ) ) -> h e. H ) -> A. h e. ( B ^m I ) ( ( # ` ( h supp .0. ) ) e. NN -> h e. H ) )
275 270 274 syl
 |-  ( ph -> A. h e. ( B ^m I ) ( ( # ` ( h supp .0. ) ) e. NN -> h e. H ) )
276 fvoveq1
 |-  ( h = X -> ( # ` ( h supp .0. ) ) = ( # ` ( X supp .0. ) ) )
277 276 eleq1d
 |-  ( h = X -> ( ( # ` ( h supp .0. ) ) e. NN <-> ( # ` ( X supp .0. ) ) e. NN ) )
278 eleq1
 |-  ( h = X -> ( h e. H <-> X e. H ) )
279 277 278 imbi12d
 |-  ( h = X -> ( ( ( # ` ( h supp .0. ) ) e. NN -> h e. H ) <-> ( ( # ` ( X supp .0. ) ) e. NN -> X e. H ) ) )
280 279 rspcv
 |-  ( X e. ( B ^m I ) -> ( A. h e. ( B ^m I ) ( ( # ` ( h supp .0. ) ) e. NN -> h e. H ) -> ( ( # ` ( X supp .0. ) ) e. NN -> X e. H ) ) )
281 275 280 syl5com
 |-  ( ph -> ( X e. ( B ^m I ) -> ( ( # ` ( X supp .0. ) ) e. NN -> X e. H ) ) )
282 281 com23
 |-  ( ph -> ( ( # ` ( X supp .0. ) ) e. NN -> ( X e. ( B ^m I ) -> X e. H ) ) )
283 282 imp
 |-  ( ( ph /\ ( # ` ( X supp .0. ) ) e. NN ) -> ( X e. ( B ^m I ) -> X e. H ) )
284 12 283 sylbird
 |-  ( ( ph /\ ( # ` ( X supp .0. ) ) e. NN ) -> ( X : I --> B -> X e. H ) )
285 284 imp
 |-  ( ( ( ph /\ ( # ` ( X supp .0. ) ) e. NN ) /\ X : I --> B ) -> X e. H )
286 285 an32s
 |-  ( ( ( ph /\ X : I --> B ) /\ ( # ` ( X supp .0. ) ) e. NN ) -> X e. H )
287 286 adantlr
 |-  ( ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) /\ ( # ` ( X supp .0. ) ) e. NN ) -> X e. H )
288 ovex
 |-  ( X supp .0. ) e. _V
289 hasheq0
 |-  ( ( X supp .0. ) e. _V -> ( ( # ` ( X supp .0. ) ) = 0 <-> ( X supp .0. ) = (/) ) )
290 288 289 ax-mp
 |-  ( ( # ` ( X supp .0. ) ) = 0 <-> ( X supp .0. ) = (/) )
291 ffn
 |-  ( X : I --> B -> X Fn I )
292 291 ad2antlr
 |-  ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) -> X Fn I )
293 5 ad2antrr
 |-  ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) -> I e. V )
294 33 a1i
 |-  ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) -> .0. e. _V )
295 fnsuppeq0
 |-  ( ( X Fn I /\ I e. V /\ .0. e. _V ) -> ( ( X supp .0. ) = (/) <-> X = ( I X. { .0. } ) ) )
296 292 293 294 295 syl3anc
 |-  ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) -> ( ( X supp .0. ) = (/) <-> X = ( I X. { .0. } ) ) )
297 296 biimpa
 |-  ( ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) /\ ( X supp .0. ) = (/) ) -> X = ( I X. { .0. } ) )
298 6 ad3antrrr
 |-  ( ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) /\ ( X supp .0. ) = (/) ) -> ( I X. { .0. } ) e. H )
299 297 298 eqeltrd
 |-  ( ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) /\ ( X supp .0. ) = (/) ) -> X e. H )
300 290 299 sylan2b
 |-  ( ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) /\ ( # ` ( X supp .0. ) ) = 0 ) -> X e. H )
301 simpr
 |-  ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) -> X finSupp .0. )
302 301 fsuppimpd
 |-  ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) -> ( X supp .0. ) e. Fin )
303 hashcl
 |-  ( ( X supp .0. ) e. Fin -> ( # ` ( X supp .0. ) ) e. NN0 )
304 302 303 syl
 |-  ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) -> ( # ` ( X supp .0. ) ) e. NN0 )
305 elnn0
 |-  ( ( # ` ( X supp .0. ) ) e. NN0 <-> ( ( # ` ( X supp .0. ) ) e. NN \/ ( # ` ( X supp .0. ) ) = 0 ) )
306 304 305 sylib
 |-  ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) -> ( ( # ` ( X supp .0. ) ) e. NN \/ ( # ` ( X supp .0. ) ) = 0 ) )
307 287 300 306 mpjaodan
 |-  ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) -> X e. H )
308 307 anasss
 |-  ( ( ph /\ ( X : I --> B /\ X finSupp .0. ) ) -> X e. H )