Step |
Hyp |
Ref |
Expression |
1 |
|
fsuppind.b |
|- B = ( Base ` G ) |
2 |
|
fsuppind.z |
|- .0. = ( 0g ` G ) |
3 |
|
fsuppind.p |
|- .+ = ( +g ` G ) |
4 |
|
fsuppind.g |
|- ( ph -> G e. Grp ) |
5 |
|
fsuppind.v |
|- ( ph -> I e. V ) |
6 |
|
fsuppind.0 |
|- ( ph -> ( I X. { .0. } ) e. H ) |
7 |
|
fsuppind.1 |
|- ( ( ph /\ ( a e. I /\ b e. B ) ) -> ( x e. I |-> if ( x = a , b , .0. ) ) e. H ) |
8 |
|
fsuppind.2 |
|- ( ( ph /\ ( x e. H /\ y e. H ) ) -> ( x oF .+ y ) e. H ) |
9 |
1
|
fvexi |
|- B e. _V |
10 |
9
|
a1i |
|- ( ph -> B e. _V ) |
11 |
10 5
|
elmapd |
|- ( ph -> ( X e. ( B ^m I ) <-> X : I --> B ) ) |
12 |
11
|
adantr |
|- ( ( ph /\ ( # ` ( X supp .0. ) ) e. NN ) -> ( X e. ( B ^m I ) <-> X : I --> B ) ) |
13 |
|
eqeq1 |
|- ( i = 1 -> ( i = ( # ` ( h supp .0. ) ) <-> 1 = ( # ` ( h supp .0. ) ) ) ) |
14 |
13
|
imbi1d |
|- ( i = 1 -> ( ( i = ( # ` ( h supp .0. ) ) -> h e. H ) <-> ( 1 = ( # ` ( h supp .0. ) ) -> h e. H ) ) ) |
15 |
14
|
ralbidv |
|- ( i = 1 -> ( A. h e. ( B ^m I ) ( i = ( # ` ( h supp .0. ) ) -> h e. H ) <-> A. h e. ( B ^m I ) ( 1 = ( # ` ( h supp .0. ) ) -> h e. H ) ) ) |
16 |
|
eqeq1 |
|- ( i = j -> ( i = ( # ` ( h supp .0. ) ) <-> j = ( # ` ( h supp .0. ) ) ) ) |
17 |
16
|
imbi1d |
|- ( i = j -> ( ( i = ( # ` ( h supp .0. ) ) -> h e. H ) <-> ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) ) |
18 |
17
|
ralbidv |
|- ( i = j -> ( A. h e. ( B ^m I ) ( i = ( # ` ( h supp .0. ) ) -> h e. H ) <-> A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) ) |
19 |
|
eqeq1 |
|- ( i = ( j + 1 ) -> ( i = ( # ` ( h supp .0. ) ) <-> ( j + 1 ) = ( # ` ( h supp .0. ) ) ) ) |
20 |
19
|
imbi1d |
|- ( i = ( j + 1 ) -> ( ( i = ( # ` ( h supp .0. ) ) -> h e. H ) <-> ( ( j + 1 ) = ( # ` ( h supp .0. ) ) -> h e. H ) ) ) |
21 |
20
|
ralbidv |
|- ( i = ( j + 1 ) -> ( A. h e. ( B ^m I ) ( i = ( # ` ( h supp .0. ) ) -> h e. H ) <-> A. h e. ( B ^m I ) ( ( j + 1 ) = ( # ` ( h supp .0. ) ) -> h e. H ) ) ) |
22 |
|
eqeq1 |
|- ( i = n -> ( i = ( # ` ( h supp .0. ) ) <-> n = ( # ` ( h supp .0. ) ) ) ) |
23 |
22
|
imbi1d |
|- ( i = n -> ( ( i = ( # ` ( h supp .0. ) ) -> h e. H ) <-> ( n = ( # ` ( h supp .0. ) ) -> h e. H ) ) ) |
24 |
23
|
ralbidv |
|- ( i = n -> ( A. h e. ( B ^m I ) ( i = ( # ` ( h supp .0. ) ) -> h e. H ) <-> A. h e. ( B ^m I ) ( n = ( # ` ( h supp .0. ) ) -> h e. H ) ) ) |
25 |
|
eqcom |
|- ( 1 = ( # ` ( h supp .0. ) ) <-> ( # ` ( h supp .0. ) ) = 1 ) |
26 |
|
ovex |
|- ( h supp .0. ) e. _V |
27 |
|
euhash1 |
|- ( ( h supp .0. ) e. _V -> ( ( # ` ( h supp .0. ) ) = 1 <-> E! c c e. ( h supp .0. ) ) ) |
28 |
26 27
|
ax-mp |
|- ( ( # ` ( h supp .0. ) ) = 1 <-> E! c c e. ( h supp .0. ) ) |
29 |
25 28
|
bitri |
|- ( 1 = ( # ` ( h supp .0. ) ) <-> E! c c e. ( h supp .0. ) ) |
30 |
|
elmapfn |
|- ( h e. ( B ^m I ) -> h Fn I ) |
31 |
30
|
adantl |
|- ( ( ph /\ h e. ( B ^m I ) ) -> h Fn I ) |
32 |
5
|
adantr |
|- ( ( ph /\ h e. ( B ^m I ) ) -> I e. V ) |
33 |
2
|
fvexi |
|- .0. e. _V |
34 |
33
|
a1i |
|- ( ( ph /\ h e. ( B ^m I ) ) -> .0. e. _V ) |
35 |
|
elsuppfn |
|- ( ( h Fn I /\ I e. V /\ .0. e. _V ) -> ( c e. ( h supp .0. ) <-> ( c e. I /\ ( h ` c ) =/= .0. ) ) ) |
36 |
31 32 34 35
|
syl3anc |
|- ( ( ph /\ h e. ( B ^m I ) ) -> ( c e. ( h supp .0. ) <-> ( c e. I /\ ( h ` c ) =/= .0. ) ) ) |
37 |
36
|
eubidv |
|- ( ( ph /\ h e. ( B ^m I ) ) -> ( E! c c e. ( h supp .0. ) <-> E! c ( c e. I /\ ( h ` c ) =/= .0. ) ) ) |
38 |
|
df-reu |
|- ( E! c e. I ( h ` c ) =/= .0. <-> E! c ( c e. I /\ ( h ` c ) =/= .0. ) ) |
39 |
37 38
|
bitr4di |
|- ( ( ph /\ h e. ( B ^m I ) ) -> ( E! c c e. ( h supp .0. ) <-> E! c e. I ( h ` c ) =/= .0. ) ) |
40 |
30
|
ad2antlr |
|- ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) -> h Fn I ) |
41 |
|
fvex |
|- ( h ` x ) e. _V |
42 |
41 33
|
ifex |
|- if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) e. _V |
43 |
|
eqid |
|- ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) ) = ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) ) |
44 |
42 43
|
fnmpti |
|- ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) ) Fn I |
45 |
44
|
a1i |
|- ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) -> ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) ) Fn I ) |
46 |
|
eqeq1 |
|- ( x = v -> ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) <-> v = ( iota_ c e. I ( h ` c ) =/= .0. ) ) ) |
47 |
|
fveq2 |
|- ( x = v -> ( h ` x ) = ( h ` v ) ) |
48 |
46 47
|
ifbieq1d |
|- ( x = v -> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) = if ( v = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` v ) , .0. ) ) |
49 |
48 43 42
|
fvmpt3i |
|- ( v e. I -> ( ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) ) ` v ) = if ( v = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` v ) , .0. ) ) |
50 |
49
|
adantl |
|- ( ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) /\ v e. I ) -> ( ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) ) ` v ) = if ( v = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` v ) , .0. ) ) |
51 |
|
eqidd |
|- ( ( ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) /\ v e. I ) /\ v = ( iota_ c e. I ( h ` c ) =/= .0. ) ) -> ( h ` v ) = ( h ` v ) ) |
52 |
|
simpr |
|- ( ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) /\ v e. I ) -> v e. I ) |
53 |
|
simplr |
|- ( ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) /\ v e. I ) -> E! c e. I ( h ` c ) =/= .0. ) |
54 |
|
fveq2 |
|- ( c = v -> ( h ` c ) = ( h ` v ) ) |
55 |
54
|
neeq1d |
|- ( c = v -> ( ( h ` c ) =/= .0. <-> ( h ` v ) =/= .0. ) ) |
56 |
55
|
riota2 |
|- ( ( v e. I /\ E! c e. I ( h ` c ) =/= .0. ) -> ( ( h ` v ) =/= .0. <-> ( iota_ c e. I ( h ` c ) =/= .0. ) = v ) ) |
57 |
52 53 56
|
syl2anc |
|- ( ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) /\ v e. I ) -> ( ( h ` v ) =/= .0. <-> ( iota_ c e. I ( h ` c ) =/= .0. ) = v ) ) |
58 |
|
necom |
|- ( .0. =/= ( h ` v ) <-> ( h ` v ) =/= .0. ) |
59 |
|
eqcom |
|- ( v = ( iota_ c e. I ( h ` c ) =/= .0. ) <-> ( iota_ c e. I ( h ` c ) =/= .0. ) = v ) |
60 |
57 58 59
|
3bitr4g |
|- ( ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) /\ v e. I ) -> ( .0. =/= ( h ` v ) <-> v = ( iota_ c e. I ( h ` c ) =/= .0. ) ) ) |
61 |
60
|
biimpd |
|- ( ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) /\ v e. I ) -> ( .0. =/= ( h ` v ) -> v = ( iota_ c e. I ( h ` c ) =/= .0. ) ) ) |
62 |
61
|
necon1bd |
|- ( ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) /\ v e. I ) -> ( -. v = ( iota_ c e. I ( h ` c ) =/= .0. ) -> .0. = ( h ` v ) ) ) |
63 |
62
|
imp |
|- ( ( ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) /\ v e. I ) /\ -. v = ( iota_ c e. I ( h ` c ) =/= .0. ) ) -> .0. = ( h ` v ) ) |
64 |
51 63
|
ifeqda |
|- ( ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) /\ v e. I ) -> if ( v = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` v ) , .0. ) = ( h ` v ) ) |
65 |
50 64
|
eqtr2d |
|- ( ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) /\ v e. I ) -> ( h ` v ) = ( ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) ) ` v ) ) |
66 |
40 45 65
|
eqfnfvd |
|- ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) -> h = ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) ) ) |
67 |
|
riotacl |
|- ( E! c e. I ( h ` c ) =/= .0. -> ( iota_ c e. I ( h ` c ) =/= .0. ) e. I ) |
68 |
67
|
adantl |
|- ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) -> ( iota_ c e. I ( h ` c ) =/= .0. ) e. I ) |
69 |
|
elmapi |
|- ( h e. ( B ^m I ) -> h : I --> B ) |
70 |
69
|
ad2antlr |
|- ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) -> h : I --> B ) |
71 |
70 68
|
ffvelcdmd |
|- ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) -> ( h ` ( iota_ c e. I ( h ` c ) =/= .0. ) ) e. B ) |
72 |
7
|
ralrimivva |
|- ( ph -> A. a e. I A. b e. B ( x e. I |-> if ( x = a , b , .0. ) ) e. H ) |
73 |
72
|
ad2antrr |
|- ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) -> A. a e. I A. b e. B ( x e. I |-> if ( x = a , b , .0. ) ) e. H ) |
74 |
|
eqeq2 |
|- ( a = ( iota_ c e. I ( h ` c ) =/= .0. ) -> ( x = a <-> x = ( iota_ c e. I ( h ` c ) =/= .0. ) ) ) |
75 |
74
|
ifbid |
|- ( a = ( iota_ c e. I ( h ` c ) =/= .0. ) -> if ( x = a , b , .0. ) = if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , b , .0. ) ) |
76 |
75
|
mpteq2dv |
|- ( a = ( iota_ c e. I ( h ` c ) =/= .0. ) -> ( x e. I |-> if ( x = a , b , .0. ) ) = ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , b , .0. ) ) ) |
77 |
76
|
eleq1d |
|- ( a = ( iota_ c e. I ( h ` c ) =/= .0. ) -> ( ( x e. I |-> if ( x = a , b , .0. ) ) e. H <-> ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , b , .0. ) ) e. H ) ) |
78 |
|
fveq2 |
|- ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) -> ( h ` x ) = ( h ` ( iota_ c e. I ( h ` c ) =/= .0. ) ) ) |
79 |
78
|
eqeq2d |
|- ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) -> ( b = ( h ` x ) <-> b = ( h ` ( iota_ c e. I ( h ` c ) =/= .0. ) ) ) ) |
80 |
79
|
biimparc |
|- ( ( b = ( h ` ( iota_ c e. I ( h ` c ) =/= .0. ) ) /\ x = ( iota_ c e. I ( h ` c ) =/= .0. ) ) -> b = ( h ` x ) ) |
81 |
80
|
ifeq1da |
|- ( b = ( h ` ( iota_ c e. I ( h ` c ) =/= .0. ) ) -> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , b , .0. ) = if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) ) |
82 |
81
|
mpteq2dv |
|- ( b = ( h ` ( iota_ c e. I ( h ` c ) =/= .0. ) ) -> ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , b , .0. ) ) = ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) ) ) |
83 |
82
|
eleq1d |
|- ( b = ( h ` ( iota_ c e. I ( h ` c ) =/= .0. ) ) -> ( ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , b , .0. ) ) e. H <-> ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) ) e. H ) ) |
84 |
77 83
|
rspc2va |
|- ( ( ( ( iota_ c e. I ( h ` c ) =/= .0. ) e. I /\ ( h ` ( iota_ c e. I ( h ` c ) =/= .0. ) ) e. B ) /\ A. a e. I A. b e. B ( x e. I |-> if ( x = a , b , .0. ) ) e. H ) -> ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) ) e. H ) |
85 |
68 71 73 84
|
syl21anc |
|- ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) -> ( x e. I |-> if ( x = ( iota_ c e. I ( h ` c ) =/= .0. ) , ( h ` x ) , .0. ) ) e. H ) |
86 |
66 85
|
eqeltrd |
|- ( ( ( ph /\ h e. ( B ^m I ) ) /\ E! c e. I ( h ` c ) =/= .0. ) -> h e. H ) |
87 |
86
|
ex |
|- ( ( ph /\ h e. ( B ^m I ) ) -> ( E! c e. I ( h ` c ) =/= .0. -> h e. H ) ) |
88 |
39 87
|
sylbid |
|- ( ( ph /\ h e. ( B ^m I ) ) -> ( E! c c e. ( h supp .0. ) -> h e. H ) ) |
89 |
29 88
|
biimtrid |
|- ( ( ph /\ h e. ( B ^m I ) ) -> ( 1 = ( # ` ( h supp .0. ) ) -> h e. H ) ) |
90 |
89
|
ralrimiva |
|- ( ph -> A. h e. ( B ^m I ) ( 1 = ( # ` ( h supp .0. ) ) -> h e. H ) ) |
91 |
|
fvoveq1 |
|- ( m = ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) -> ( # ` ( m supp .0. ) ) = ( # ` ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) ) ) |
92 |
91
|
eqeq2d |
|- ( m = ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) -> ( j = ( # ` ( m supp .0. ) ) <-> j = ( # ` ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) ) ) ) |
93 |
|
oveq1 |
|- ( m = ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) -> ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) = ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) |
94 |
93
|
eqeq2d |
|- ( m = ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) -> ( l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) <-> l = ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) |
95 |
92 94
|
anbi12d |
|- ( m = ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) -> ( ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) <-> ( j = ( # ` ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) ) /\ l = ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) ) |
96 |
1 2
|
grpidcl |
|- ( G e. Grp -> .0. e. B ) |
97 |
4 96
|
syl |
|- ( ph -> .0. e. B ) |
98 |
97
|
ad5antr |
|- ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ x e. I ) -> .0. e. B ) |
99 |
|
eqid |
|- ( B ^m I ) = ( B ^m I ) |
100 |
|
simprl |
|- ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> l e. ( B ^m I ) ) |
101 |
100
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ x e. I ) -> l e. ( B ^m I ) ) |
102 |
|
simpr |
|- ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ x e. I ) -> x e. I ) |
103 |
99 101 102
|
mapfvd |
|- ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ x e. I ) -> ( l ` x ) e. B ) |
104 |
98 103
|
ifcld |
|- ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ x e. I ) -> if ( x = z , .0. , ( l ` x ) ) e. B ) |
105 |
104
|
fmpttd |
|- ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) : I --> B ) |
106 |
9
|
a1i |
|- ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> B e. _V ) |
107 |
5
|
ad4antr |
|- ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> I e. V ) |
108 |
106 107
|
elmapd |
|- ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) e. ( B ^m I ) <-> ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) : I --> B ) ) |
109 |
105 108
|
mpbird |
|- ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) e. ( B ^m I ) ) |
110 |
109
|
adantrl |
|- ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) e. ( B ^m I ) ) |
111 |
|
ovexd |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> ( l supp .0. ) e. _V ) |
112 |
|
simprl |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> z e. I ) |
113 |
|
simprr |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> ( l ` z ) =/= .0. ) |
114 |
|
elmapfn |
|- ( l e. ( B ^m I ) -> l Fn I ) |
115 |
114
|
ad2antrl |
|- ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> l Fn I ) |
116 |
115
|
adantr |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> l Fn I ) |
117 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> I e. V ) |
118 |
33
|
a1i |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> .0. e. _V ) |
119 |
|
elsuppfn |
|- ( ( l Fn I /\ I e. V /\ .0. e. _V ) -> ( z e. ( l supp .0. ) <-> ( z e. I /\ ( l ` z ) =/= .0. ) ) ) |
120 |
116 117 118 119
|
syl3anc |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> ( z e. ( l supp .0. ) <-> ( z e. I /\ ( l ` z ) =/= .0. ) ) ) |
121 |
112 113 120
|
mpbir2and |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> z e. ( l supp .0. ) ) |
122 |
|
simpllr |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> j e. NN ) |
123 |
122
|
nnnn0d |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> j e. NN0 ) |
124 |
|
simplrr |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> ( j + 1 ) = ( # ` ( l supp .0. ) ) ) |
125 |
124
|
eqcomd |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> ( # ` ( l supp .0. ) ) = ( j + 1 ) ) |
126 |
|
hashdifsnp1 |
|- ( ( ( l supp .0. ) e. _V /\ z e. ( l supp .0. ) /\ j e. NN0 ) -> ( ( # ` ( l supp .0. ) ) = ( j + 1 ) -> ( # ` ( ( l supp .0. ) \ { z } ) ) = j ) ) |
127 |
126
|
imp |
|- ( ( ( ( l supp .0. ) e. _V /\ z e. ( l supp .0. ) /\ j e. NN0 ) /\ ( # ` ( l supp .0. ) ) = ( j + 1 ) ) -> ( # ` ( ( l supp .0. ) \ { z } ) ) = j ) |
128 |
111 121 123 125 127
|
syl31anc |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> ( # ` ( ( l supp .0. ) \ { z } ) ) = j ) |
129 |
|
eldifsn |
|- ( v e. ( ( l supp .0. ) \ { z } ) <-> ( v e. ( l supp .0. ) /\ v =/= z ) ) |
130 |
|
fvex |
|- ( l ` x ) e. _V |
131 |
33 130
|
ifex |
|- if ( x = z , .0. , ( l ` x ) ) e. _V |
132 |
|
eqid |
|- ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) = ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) |
133 |
131 132
|
fnmpti |
|- ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) Fn I |
134 |
133
|
a1i |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) Fn I ) |
135 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> I e. V ) |
136 |
33
|
a1i |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> .0. e. _V ) |
137 |
|
elsuppfn |
|- ( ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) Fn I /\ I e. V /\ .0. e. _V ) -> ( v e. ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) <-> ( v e. I /\ ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) ` v ) =/= .0. ) ) ) |
138 |
134 135 136 137
|
syl3anc |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( v e. ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) <-> ( v e. I /\ ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) ` v ) =/= .0. ) ) ) |
139 |
|
iftrue |
|- ( v = z -> if ( v = z , .0. , ( l ` v ) ) = .0. ) |
140 |
|
olc |
|- ( v = z -> ( ( l ` v ) = .0. \/ v = z ) ) |
141 |
139 140
|
2thd |
|- ( v = z -> ( if ( v = z , .0. , ( l ` v ) ) = .0. <-> ( ( l ` v ) = .0. \/ v = z ) ) ) |
142 |
|
iffalse |
|- ( -. v = z -> if ( v = z , .0. , ( l ` v ) ) = ( l ` v ) ) |
143 |
142
|
eqeq1d |
|- ( -. v = z -> ( if ( v = z , .0. , ( l ` v ) ) = .0. <-> ( l ` v ) = .0. ) ) |
144 |
|
biorf |
|- ( -. v = z -> ( ( l ` v ) = .0. <-> ( v = z \/ ( l ` v ) = .0. ) ) ) |
145 |
|
orcom |
|- ( ( ( l ` v ) = .0. \/ v = z ) <-> ( v = z \/ ( l ` v ) = .0. ) ) |
146 |
144 145
|
bitr4di |
|- ( -. v = z -> ( ( l ` v ) = .0. <-> ( ( l ` v ) = .0. \/ v = z ) ) ) |
147 |
143 146
|
bitrd |
|- ( -. v = z -> ( if ( v = z , .0. , ( l ` v ) ) = .0. <-> ( ( l ` v ) = .0. \/ v = z ) ) ) |
148 |
141 147
|
pm2.61i |
|- ( if ( v = z , .0. , ( l ` v ) ) = .0. <-> ( ( l ` v ) = .0. \/ v = z ) ) |
149 |
148
|
a1i |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( if ( v = z , .0. , ( l ` v ) ) = .0. <-> ( ( l ` v ) = .0. \/ v = z ) ) ) |
150 |
149
|
necon3abid |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( if ( v = z , .0. , ( l ` v ) ) =/= .0. <-> -. ( ( l ` v ) = .0. \/ v = z ) ) ) |
151 |
|
neanior |
|- ( ( ( l ` v ) =/= .0. /\ v =/= z ) <-> -. ( ( l ` v ) = .0. \/ v = z ) ) |
152 |
150 151
|
bitr4di |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( if ( v = z , .0. , ( l ` v ) ) =/= .0. <-> ( ( l ` v ) =/= .0. /\ v =/= z ) ) ) |
153 |
152
|
anbi2d |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( ( v e. I /\ if ( v = z , .0. , ( l ` v ) ) =/= .0. ) <-> ( v e. I /\ ( ( l ` v ) =/= .0. /\ v =/= z ) ) ) ) |
154 |
|
anass |
|- ( ( ( v e. I /\ ( l ` v ) =/= .0. ) /\ v =/= z ) <-> ( v e. I /\ ( ( l ` v ) =/= .0. /\ v =/= z ) ) ) |
155 |
153 154
|
bitr4di |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( ( v e. I /\ if ( v = z , .0. , ( l ` v ) ) =/= .0. ) <-> ( ( v e. I /\ ( l ` v ) =/= .0. ) /\ v =/= z ) ) ) |
156 |
|
equequ1 |
|- ( x = v -> ( x = z <-> v = z ) ) |
157 |
|
fveq2 |
|- ( x = v -> ( l ` x ) = ( l ` v ) ) |
158 |
156 157
|
ifbieq2d |
|- ( x = v -> if ( x = z , .0. , ( l ` x ) ) = if ( v = z , .0. , ( l ` v ) ) ) |
159 |
158 132 131
|
fvmpt3i |
|- ( v e. I -> ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) ` v ) = if ( v = z , .0. , ( l ` v ) ) ) |
160 |
159
|
adantl |
|- ( ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ v e. I ) -> ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) ` v ) = if ( v = z , .0. , ( l ` v ) ) ) |
161 |
160
|
neeq1d |
|- ( ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ v e. I ) -> ( ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) ` v ) =/= .0. <-> if ( v = z , .0. , ( l ` v ) ) =/= .0. ) ) |
162 |
161
|
pm5.32da |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( ( v e. I /\ ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) ` v ) =/= .0. ) <-> ( v e. I /\ if ( v = z , .0. , ( l ` v ) ) =/= .0. ) ) ) |
163 |
115
|
adantr |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> l Fn I ) |
164 |
|
elsuppfn |
|- ( ( l Fn I /\ I e. V /\ .0. e. _V ) -> ( v e. ( l supp .0. ) <-> ( v e. I /\ ( l ` v ) =/= .0. ) ) ) |
165 |
163 135 136 164
|
syl3anc |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( v e. ( l supp .0. ) <-> ( v e. I /\ ( l ` v ) =/= .0. ) ) ) |
166 |
165
|
anbi1d |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( ( v e. ( l supp .0. ) /\ v =/= z ) <-> ( ( v e. I /\ ( l ` v ) =/= .0. ) /\ v =/= z ) ) ) |
167 |
155 162 166
|
3bitr4d |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( ( v e. I /\ ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) ` v ) =/= .0. ) <-> ( v e. ( l supp .0. ) /\ v =/= z ) ) ) |
168 |
138 167
|
bitr2d |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( ( v e. ( l supp .0. ) /\ v =/= z ) <-> v e. ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) ) ) |
169 |
129 168
|
bitrid |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( v e. ( ( l supp .0. ) \ { z } ) <-> v e. ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) ) ) |
170 |
169
|
eqrdv |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( ( l supp .0. ) \ { z } ) = ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) ) |
171 |
170
|
fveq2d |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( # ` ( ( l supp .0. ) \ { z } ) ) = ( # ` ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) ) ) |
172 |
171
|
adantrl |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> ( # ` ( ( l supp .0. ) \ { z } ) ) = ( # ` ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) ) ) |
173 |
128 172
|
eqtr3d |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> j = ( # ` ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) ) ) |
174 |
130 33
|
ifex |
|- if ( x = z , ( l ` x ) , .0. ) e. _V |
175 |
|
eqid |
|- ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) = ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) |
176 |
174 175
|
fnmpti |
|- ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) Fn I |
177 |
176
|
a1i |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) Fn I ) |
178 |
|
inidm |
|- ( I i^i I ) = I |
179 |
134 177 135 135 178
|
offn |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) Fn I ) |
180 |
156 157
|
ifbieq1d |
|- ( x = v -> if ( x = z , ( l ` x ) , .0. ) = if ( v = z , ( l ` v ) , .0. ) ) |
181 |
180 175 174
|
fvmpt3i |
|- ( v e. I -> ( ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ` v ) = if ( v = z , ( l ` v ) , .0. ) ) |
182 |
181
|
adantl |
|- ( ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ v e. I ) -> ( ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ` v ) = if ( v = z , ( l ` v ) , .0. ) ) |
183 |
134 177 135 135 178 160 182
|
ofval |
|- ( ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ v e. I ) -> ( ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ` v ) = ( if ( v = z , .0. , ( l ` v ) ) .+ if ( v = z , ( l ` v ) , .0. ) ) ) |
184 |
4
|
ad4antr |
|- ( ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ v e. I ) -> G e. Grp ) |
185 |
|
simplrl |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( ( l ` z ) =/= .0. /\ v e. I ) ) -> l e. ( B ^m I ) ) |
186 |
185
|
anassrs |
|- ( ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ v e. I ) -> l e. ( B ^m I ) ) |
187 |
|
simpr |
|- ( ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ v e. I ) -> v e. I ) |
188 |
99 186 187
|
mapfvd |
|- ( ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ v e. I ) -> ( l ` v ) e. B ) |
189 |
1 3 2
|
grplid |
|- ( ( G e. Grp /\ ( l ` v ) e. B ) -> ( .0. .+ ( l ` v ) ) = ( l ` v ) ) |
190 |
1 3 2
|
grprid |
|- ( ( G e. Grp /\ ( l ` v ) e. B ) -> ( ( l ` v ) .+ .0. ) = ( l ` v ) ) |
191 |
189 190
|
ifeq12d |
|- ( ( G e. Grp /\ ( l ` v ) e. B ) -> if ( v = z , ( .0. .+ ( l ` v ) ) , ( ( l ` v ) .+ .0. ) ) = if ( v = z , ( l ` v ) , ( l ` v ) ) ) |
192 |
184 188 191
|
syl2anc |
|- ( ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ v e. I ) -> if ( v = z , ( .0. .+ ( l ` v ) ) , ( ( l ` v ) .+ .0. ) ) = if ( v = z , ( l ` v ) , ( l ` v ) ) ) |
193 |
|
ovif12 |
|- ( if ( v = z , .0. , ( l ` v ) ) .+ if ( v = z , ( l ` v ) , .0. ) ) = if ( v = z , ( .0. .+ ( l ` v ) ) , ( ( l ` v ) .+ .0. ) ) |
194 |
|
ifid |
|- if ( v = z , ( l ` v ) , ( l ` v ) ) = ( l ` v ) |
195 |
194
|
eqcomi |
|- ( l ` v ) = if ( v = z , ( l ` v ) , ( l ` v ) ) |
196 |
192 193 195
|
3eqtr4g |
|- ( ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ v e. I ) -> ( if ( v = z , .0. , ( l ` v ) ) .+ if ( v = z , ( l ` v ) , .0. ) ) = ( l ` v ) ) |
197 |
183 196
|
eqtr2d |
|- ( ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) /\ v e. I ) -> ( l ` v ) = ( ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ` v ) ) |
198 |
163 179 197
|
eqfnfvd |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( l ` z ) =/= .0. ) -> l = ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) |
199 |
198
|
adantrl |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> l = ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) |
200 |
173 199
|
jca |
|- ( ( ( ( ph /\ j e. NN ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> ( j = ( # ` ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) ) /\ l = ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) |
201 |
200
|
adantllr |
|- ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> ( j = ( # ` ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) supp .0. ) ) /\ l = ( ( x e. I |-> if ( x = z , .0. , ( l ` x ) ) ) oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) |
202 |
95 110 201
|
rspcedvdw |
|- ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( z e. I /\ ( l ` z ) =/= .0. ) ) -> E. m e. ( B ^m I ) ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) |
203 |
114
|
ad2antrl |
|- ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> l Fn I ) |
204 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> I e. V ) |
205 |
33
|
a1i |
|- ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> .0. e. _V ) |
206 |
|
suppvalfn |
|- ( ( l Fn I /\ I e. V /\ .0. e. _V ) -> ( l supp .0. ) = { z e. I | ( l ` z ) =/= .0. } ) |
207 |
203 204 205 206
|
syl3anc |
|- ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> ( l supp .0. ) = { z e. I | ( l ` z ) =/= .0. } ) |
208 |
|
simprr |
|- ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> ( j + 1 ) = ( # ` ( l supp .0. ) ) ) |
209 |
|
peano2nn |
|- ( j e. NN -> ( j + 1 ) e. NN ) |
210 |
209
|
ad3antlr |
|- ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> ( j + 1 ) e. NN ) |
211 |
210
|
nnne0d |
|- ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> ( j + 1 ) =/= 0 ) |
212 |
208 211
|
eqnetrrd |
|- ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> ( # ` ( l supp .0. ) ) =/= 0 ) |
213 |
|
ovex |
|- ( l supp .0. ) e. _V |
214 |
|
hasheq0 |
|- ( ( l supp .0. ) e. _V -> ( ( # ` ( l supp .0. ) ) = 0 <-> ( l supp .0. ) = (/) ) ) |
215 |
214
|
necon3bid |
|- ( ( l supp .0. ) e. _V -> ( ( # ` ( l supp .0. ) ) =/= 0 <-> ( l supp .0. ) =/= (/) ) ) |
216 |
213 215
|
mp1i |
|- ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> ( ( # ` ( l supp .0. ) ) =/= 0 <-> ( l supp .0. ) =/= (/) ) ) |
217 |
212 216
|
mpbid |
|- ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> ( l supp .0. ) =/= (/) ) |
218 |
207 217
|
eqnetrrd |
|- ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> { z e. I | ( l ` z ) =/= .0. } =/= (/) ) |
219 |
|
rabn0 |
|- ( { z e. I | ( l ` z ) =/= .0. } =/= (/) <-> E. z e. I ( l ` z ) =/= .0. ) |
220 |
218 219
|
sylib |
|- ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> E. z e. I ( l ` z ) =/= .0. ) |
221 |
202 220
|
reximddv |
|- ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> E. z e. I E. m e. ( B ^m I ) ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) |
222 |
|
rexcom |
|- ( E. z e. I E. m e. ( B ^m I ) ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) <-> E. m e. ( B ^m I ) E. z e. I ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) |
223 |
221 222
|
sylib |
|- ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> E. m e. ( B ^m I ) E. z e. I ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) |
224 |
|
simprr |
|- ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( m e. ( B ^m I ) /\ z e. I ) ) /\ ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) -> l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) |
225 |
|
fvoveq1 |
|- ( h = m -> ( # ` ( h supp .0. ) ) = ( # ` ( m supp .0. ) ) ) |
226 |
225
|
eqeq2d |
|- ( h = m -> ( j = ( # ` ( h supp .0. ) ) <-> j = ( # ` ( m supp .0. ) ) ) ) |
227 |
|
eleq1w |
|- ( h = m -> ( h e. H <-> m e. H ) ) |
228 |
226 227
|
imbi12d |
|- ( h = m -> ( ( j = ( # ` ( h supp .0. ) ) -> h e. H ) <-> ( j = ( # ` ( m supp .0. ) ) -> m e. H ) ) ) |
229 |
228
|
rspccva |
|- ( ( A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) /\ m e. ( B ^m I ) ) -> ( j = ( # ` ( m supp .0. ) ) -> m e. H ) ) |
230 |
229
|
adantll |
|- ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ m e. ( B ^m I ) ) -> ( j = ( # ` ( m supp .0. ) ) -> m e. H ) ) |
231 |
230
|
imp |
|- ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ m e. ( B ^m I ) ) /\ j = ( # ` ( m supp .0. ) ) ) -> m e. H ) |
232 |
231
|
adantllr |
|- ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ m e. ( B ^m I ) ) /\ j = ( # ` ( m supp .0. ) ) ) -> m e. H ) |
233 |
232
|
adantlrr |
|- ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( m e. ( B ^m I ) /\ z e. I ) ) /\ j = ( # ` ( m supp .0. ) ) ) -> m e. H ) |
234 |
233
|
adantrr |
|- ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( m e. ( B ^m I ) /\ z e. I ) ) /\ ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) -> m e. H ) |
235 |
|
simplrr |
|- ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( m e. ( B ^m I ) /\ z e. I ) ) /\ ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) -> z e. I ) |
236 |
100
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( m e. ( B ^m I ) /\ z e. I ) ) /\ ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) -> l e. ( B ^m I ) ) |
237 |
99 236 235
|
mapfvd |
|- ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( m e. ( B ^m I ) /\ z e. I ) ) /\ ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) -> ( l ` z ) e. B ) |
238 |
72
|
ad5antr |
|- ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( m e. ( B ^m I ) /\ z e. I ) ) /\ ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) -> A. a e. I A. b e. B ( x e. I |-> if ( x = a , b , .0. ) ) e. H ) |
239 |
|
equequ2 |
|- ( a = z -> ( x = a <-> x = z ) ) |
240 |
239
|
ifbid |
|- ( a = z -> if ( x = a , b , .0. ) = if ( x = z , b , .0. ) ) |
241 |
240
|
mpteq2dv |
|- ( a = z -> ( x e. I |-> if ( x = a , b , .0. ) ) = ( x e. I |-> if ( x = z , b , .0. ) ) ) |
242 |
241
|
eleq1d |
|- ( a = z -> ( ( x e. I |-> if ( x = a , b , .0. ) ) e. H <-> ( x e. I |-> if ( x = z , b , .0. ) ) e. H ) ) |
243 |
|
fveq2 |
|- ( x = z -> ( l ` x ) = ( l ` z ) ) |
244 |
243
|
eqeq2d |
|- ( x = z -> ( b = ( l ` x ) <-> b = ( l ` z ) ) ) |
245 |
244
|
biimparc |
|- ( ( b = ( l ` z ) /\ x = z ) -> b = ( l ` x ) ) |
246 |
245
|
ifeq1da |
|- ( b = ( l ` z ) -> if ( x = z , b , .0. ) = if ( x = z , ( l ` x ) , .0. ) ) |
247 |
246
|
mpteq2dv |
|- ( b = ( l ` z ) -> ( x e. I |-> if ( x = z , b , .0. ) ) = ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) |
248 |
247
|
eleq1d |
|- ( b = ( l ` z ) -> ( ( x e. I |-> if ( x = z , b , .0. ) ) e. H <-> ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) e. H ) ) |
249 |
242 248
|
rspc2va |
|- ( ( ( z e. I /\ ( l ` z ) e. B ) /\ A. a e. I A. b e. B ( x e. I |-> if ( x = a , b , .0. ) ) e. H ) -> ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) e. H ) |
250 |
235 237 238 249
|
syl21anc |
|- ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( m e. ( B ^m I ) /\ z e. I ) ) /\ ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) -> ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) e. H ) |
251 |
8
|
ralrimivva |
|- ( ph -> A. x e. H A. y e. H ( x oF .+ y ) e. H ) |
252 |
251
|
ad5antr |
|- ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( m e. ( B ^m I ) /\ z e. I ) ) /\ ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) -> A. x e. H A. y e. H ( x oF .+ y ) e. H ) |
253 |
|
ovrspc2v |
|- ( ( ( m e. H /\ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) e. H ) /\ A. x e. H A. y e. H ( x oF .+ y ) e. H ) -> ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) e. H ) |
254 |
234 250 252 253
|
syl21anc |
|- ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( m e. ( B ^m I ) /\ z e. I ) ) /\ ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) -> ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) e. H ) |
255 |
224 254
|
eqeltrd |
|- ( ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( m e. ( B ^m I ) /\ z e. I ) ) /\ ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) ) -> l e. H ) |
256 |
255
|
ex |
|- ( ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) /\ ( m e. ( B ^m I ) /\ z e. I ) ) -> ( ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) -> l e. H ) ) |
257 |
256
|
rexlimdvva |
|- ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> ( E. m e. ( B ^m I ) E. z e. I ( j = ( # ` ( m supp .0. ) ) /\ l = ( m oF .+ ( x e. I |-> if ( x = z , ( l ` x ) , .0. ) ) ) ) -> l e. H ) ) |
258 |
223 257
|
mpd |
|- ( ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) /\ ( l e. ( B ^m I ) /\ ( j + 1 ) = ( # ` ( l supp .0. ) ) ) ) -> l e. H ) |
259 |
258
|
exp32 |
|- ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) -> ( l e. ( B ^m I ) -> ( ( j + 1 ) = ( # ` ( l supp .0. ) ) -> l e. H ) ) ) |
260 |
259
|
ralrimiv |
|- ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) -> A. l e. ( B ^m I ) ( ( j + 1 ) = ( # ` ( l supp .0. ) ) -> l e. H ) ) |
261 |
|
fvoveq1 |
|- ( l = h -> ( # ` ( l supp .0. ) ) = ( # ` ( h supp .0. ) ) ) |
262 |
261
|
eqeq2d |
|- ( l = h -> ( ( j + 1 ) = ( # ` ( l supp .0. ) ) <-> ( j + 1 ) = ( # ` ( h supp .0. ) ) ) ) |
263 |
|
eleq1w |
|- ( l = h -> ( l e. H <-> h e. H ) ) |
264 |
262 263
|
imbi12d |
|- ( l = h -> ( ( ( j + 1 ) = ( # ` ( l supp .0. ) ) -> l e. H ) <-> ( ( j + 1 ) = ( # ` ( h supp .0. ) ) -> h e. H ) ) ) |
265 |
264
|
cbvralvw |
|- ( A. l e. ( B ^m I ) ( ( j + 1 ) = ( # ` ( l supp .0. ) ) -> l e. H ) <-> A. h e. ( B ^m I ) ( ( j + 1 ) = ( # ` ( h supp .0. ) ) -> h e. H ) ) |
266 |
260 265
|
sylib |
|- ( ( ( ph /\ j e. NN ) /\ A. h e. ( B ^m I ) ( j = ( # ` ( h supp .0. ) ) -> h e. H ) ) -> A. h e. ( B ^m I ) ( ( j + 1 ) = ( # ` ( h supp .0. ) ) -> h e. H ) ) |
267 |
15 18 21 24 90 266
|
nnindd |
|- ( ( ph /\ n e. NN ) -> A. h e. ( B ^m I ) ( n = ( # ` ( h supp .0. ) ) -> h e. H ) ) |
268 |
267
|
ralrimiva |
|- ( ph -> A. n e. NN A. h e. ( B ^m I ) ( n = ( # ` ( h supp .0. ) ) -> h e. H ) ) |
269 |
|
ralcom |
|- ( A. n e. NN A. h e. ( B ^m I ) ( n = ( # ` ( h supp .0. ) ) -> h e. H ) <-> A. h e. ( B ^m I ) A. n e. NN ( n = ( # ` ( h supp .0. ) ) -> h e. H ) ) |
270 |
268 269
|
sylib |
|- ( ph -> A. h e. ( B ^m I ) A. n e. NN ( n = ( # ` ( h supp .0. ) ) -> h e. H ) ) |
271 |
|
biidd |
|- ( n = ( # ` ( h supp .0. ) ) -> ( h e. H <-> h e. H ) ) |
272 |
271
|
ceqsralv |
|- ( ( # ` ( h supp .0. ) ) e. NN -> ( A. n e. NN ( n = ( # ` ( h supp .0. ) ) -> h e. H ) <-> h e. H ) ) |
273 |
272
|
biimpcd |
|- ( A. n e. NN ( n = ( # ` ( h supp .0. ) ) -> h e. H ) -> ( ( # ` ( h supp .0. ) ) e. NN -> h e. H ) ) |
274 |
273
|
ralimi |
|- ( A. h e. ( B ^m I ) A. n e. NN ( n = ( # ` ( h supp .0. ) ) -> h e. H ) -> A. h e. ( B ^m I ) ( ( # ` ( h supp .0. ) ) e. NN -> h e. H ) ) |
275 |
270 274
|
syl |
|- ( ph -> A. h e. ( B ^m I ) ( ( # ` ( h supp .0. ) ) e. NN -> h e. H ) ) |
276 |
|
fvoveq1 |
|- ( h = X -> ( # ` ( h supp .0. ) ) = ( # ` ( X supp .0. ) ) ) |
277 |
276
|
eleq1d |
|- ( h = X -> ( ( # ` ( h supp .0. ) ) e. NN <-> ( # ` ( X supp .0. ) ) e. NN ) ) |
278 |
|
eleq1 |
|- ( h = X -> ( h e. H <-> X e. H ) ) |
279 |
277 278
|
imbi12d |
|- ( h = X -> ( ( ( # ` ( h supp .0. ) ) e. NN -> h e. H ) <-> ( ( # ` ( X supp .0. ) ) e. NN -> X e. H ) ) ) |
280 |
279
|
rspcv |
|- ( X e. ( B ^m I ) -> ( A. h e. ( B ^m I ) ( ( # ` ( h supp .0. ) ) e. NN -> h e. H ) -> ( ( # ` ( X supp .0. ) ) e. NN -> X e. H ) ) ) |
281 |
275 280
|
syl5com |
|- ( ph -> ( X e. ( B ^m I ) -> ( ( # ` ( X supp .0. ) ) e. NN -> X e. H ) ) ) |
282 |
281
|
com23 |
|- ( ph -> ( ( # ` ( X supp .0. ) ) e. NN -> ( X e. ( B ^m I ) -> X e. H ) ) ) |
283 |
282
|
imp |
|- ( ( ph /\ ( # ` ( X supp .0. ) ) e. NN ) -> ( X e. ( B ^m I ) -> X e. H ) ) |
284 |
12 283
|
sylbird |
|- ( ( ph /\ ( # ` ( X supp .0. ) ) e. NN ) -> ( X : I --> B -> X e. H ) ) |
285 |
284
|
imp |
|- ( ( ( ph /\ ( # ` ( X supp .0. ) ) e. NN ) /\ X : I --> B ) -> X e. H ) |
286 |
285
|
an32s |
|- ( ( ( ph /\ X : I --> B ) /\ ( # ` ( X supp .0. ) ) e. NN ) -> X e. H ) |
287 |
286
|
adantlr |
|- ( ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) /\ ( # ` ( X supp .0. ) ) e. NN ) -> X e. H ) |
288 |
|
ovex |
|- ( X supp .0. ) e. _V |
289 |
|
hasheq0 |
|- ( ( X supp .0. ) e. _V -> ( ( # ` ( X supp .0. ) ) = 0 <-> ( X supp .0. ) = (/) ) ) |
290 |
288 289
|
ax-mp |
|- ( ( # ` ( X supp .0. ) ) = 0 <-> ( X supp .0. ) = (/) ) |
291 |
|
ffn |
|- ( X : I --> B -> X Fn I ) |
292 |
291
|
ad2antlr |
|- ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) -> X Fn I ) |
293 |
5
|
ad2antrr |
|- ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) -> I e. V ) |
294 |
33
|
a1i |
|- ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) -> .0. e. _V ) |
295 |
|
fnsuppeq0 |
|- ( ( X Fn I /\ I e. V /\ .0. e. _V ) -> ( ( X supp .0. ) = (/) <-> X = ( I X. { .0. } ) ) ) |
296 |
292 293 294 295
|
syl3anc |
|- ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) -> ( ( X supp .0. ) = (/) <-> X = ( I X. { .0. } ) ) ) |
297 |
296
|
biimpa |
|- ( ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) /\ ( X supp .0. ) = (/) ) -> X = ( I X. { .0. } ) ) |
298 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) /\ ( X supp .0. ) = (/) ) -> ( I X. { .0. } ) e. H ) |
299 |
297 298
|
eqeltrd |
|- ( ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) /\ ( X supp .0. ) = (/) ) -> X e. H ) |
300 |
290 299
|
sylan2b |
|- ( ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) /\ ( # ` ( X supp .0. ) ) = 0 ) -> X e. H ) |
301 |
|
simpr |
|- ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) -> X finSupp .0. ) |
302 |
301
|
fsuppimpd |
|- ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) -> ( X supp .0. ) e. Fin ) |
303 |
|
hashcl |
|- ( ( X supp .0. ) e. Fin -> ( # ` ( X supp .0. ) ) e. NN0 ) |
304 |
302 303
|
syl |
|- ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) -> ( # ` ( X supp .0. ) ) e. NN0 ) |
305 |
|
elnn0 |
|- ( ( # ` ( X supp .0. ) ) e. NN0 <-> ( ( # ` ( X supp .0. ) ) e. NN \/ ( # ` ( X supp .0. ) ) = 0 ) ) |
306 |
304 305
|
sylib |
|- ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) -> ( ( # ` ( X supp .0. ) ) e. NN \/ ( # ` ( X supp .0. ) ) = 0 ) ) |
307 |
287 300 306
|
mpjaodan |
|- ( ( ( ph /\ X : I --> B ) /\ X finSupp .0. ) -> X e. H ) |
308 |
307
|
anasss |
|- ( ( ph /\ ( X : I --> B /\ X finSupp .0. ) ) -> X e. H ) |