Metamath Proof Explorer


Theorem fsuppmptdm

Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 7-Jun-2019)

Ref Expression
Hypotheses fsuppmptdm.f
|- F = ( x e. A |-> Y )
fsuppmptdm.a
|- ( ph -> A e. Fin )
fsuppmptdm.y
|- ( ( ph /\ x e. A ) -> Y e. V )
fsuppmptdm.z
|- ( ph -> Z e. W )
Assertion fsuppmptdm
|- ( ph -> F finSupp Z )

Proof

Step Hyp Ref Expression
1 fsuppmptdm.f
 |-  F = ( x e. A |-> Y )
2 fsuppmptdm.a
 |-  ( ph -> A e. Fin )
3 fsuppmptdm.y
 |-  ( ( ph /\ x e. A ) -> Y e. V )
4 fsuppmptdm.z
 |-  ( ph -> Z e. W )
5 3 1 fmptd
 |-  ( ph -> F : A --> V )
6 5 2 4 fdmfifsupp
 |-  ( ph -> F finSupp Z )