Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 7-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsuppmptdm.f | |- F = ( x e. A |-> Y ) |
|
fsuppmptdm.a | |- ( ph -> A e. Fin ) |
||
fsuppmptdm.y | |- ( ( ph /\ x e. A ) -> Y e. V ) |
||
fsuppmptdm.z | |- ( ph -> Z e. W ) |
||
Assertion | fsuppmptdm | |- ( ph -> F finSupp Z ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppmptdm.f | |- F = ( x e. A |-> Y ) |
|
2 | fsuppmptdm.a | |- ( ph -> A e. Fin ) |
|
3 | fsuppmptdm.y | |- ( ( ph /\ x e. A ) -> Y e. V ) |
|
4 | fsuppmptdm.z | |- ( ph -> Z e. W ) |
|
5 | 3 1 | fmptd | |- ( ph -> F : A --> V ) |
6 | 5 2 4 | fdmfifsupp | |- ( ph -> F finSupp Z ) |