Metamath Proof Explorer


Theorem fsuppsssuppgd

Description: If the support of a function is a subset of a finite support, it is finite. Deduction associated with fsuppsssupp . (Contributed by SN, 6-Mar-2025)

Ref Expression
Hypotheses fsuppsssuppgd.g
|- ( ph -> G e. V )
fsuppsssuppgd.z
|- ( ph -> Z e. W )
fsuppsssuppgd.1
|- ( ph -> Fun G )
fsuppsssuppgd.2
|- ( ph -> F finSupp O )
fsuppsssuppgd.3
|- ( ph -> ( G supp Z ) C_ ( F supp O ) )
Assertion fsuppsssuppgd
|- ( ph -> G finSupp Z )

Proof

Step Hyp Ref Expression
1 fsuppsssuppgd.g
 |-  ( ph -> G e. V )
2 fsuppsssuppgd.z
 |-  ( ph -> Z e. W )
3 fsuppsssuppgd.1
 |-  ( ph -> Fun G )
4 fsuppsssuppgd.2
 |-  ( ph -> F finSupp O )
5 fsuppsssuppgd.3
 |-  ( ph -> ( G supp Z ) C_ ( F supp O ) )
6 4 fsuppimpd
 |-  ( ph -> ( F supp O ) e. Fin )
7 suppssfifsupp
 |-  ( ( ( G e. V /\ Fun G /\ Z e. W ) /\ ( ( F supp O ) e. Fin /\ ( G supp Z ) C_ ( F supp O ) ) ) -> G finSupp Z )
8 1 3 2 6 5 7 syl32anc
 |-  ( ph -> G finSupp Z )