Description: If the support of a function is a subset of a finite support, it is finite. Deduction associated with fsuppsssupp . (Contributed by SN, 6-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsuppsssuppgd.g | |- ( ph -> G e. V ) | |
| fsuppsssuppgd.z | |- ( ph -> Z e. W ) | ||
| fsuppsssuppgd.1 | |- ( ph -> Fun G ) | ||
| fsuppsssuppgd.2 | |- ( ph -> F finSupp O ) | ||
| fsuppsssuppgd.3 | |- ( ph -> ( G supp Z ) C_ ( F supp O ) ) | ||
| Assertion | fsuppsssuppgd | |- ( ph -> G finSupp Z ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fsuppsssuppgd.g | |- ( ph -> G e. V ) | |
| 2 | fsuppsssuppgd.z | |- ( ph -> Z e. W ) | |
| 3 | fsuppsssuppgd.1 | |- ( ph -> Fun G ) | |
| 4 | fsuppsssuppgd.2 | |- ( ph -> F finSupp O ) | |
| 5 | fsuppsssuppgd.3 | |- ( ph -> ( G supp Z ) C_ ( F supp O ) ) | |
| 6 | 4 | fsuppimpd | |- ( ph -> ( F supp O ) e. Fin ) | 
| 7 | suppssfifsupp | |- ( ( ( G e. V /\ Fun G /\ Z e. W ) /\ ( ( F supp O ) e. Fin /\ ( G supp Z ) C_ ( F supp O ) ) ) -> G finSupp Z ) | |
| 8 | 1 3 2 6 5 7 | syl32anc | |- ( ph -> G finSupp Z ) |