Description: If the support of a function is a subset of a finite support, it is finite. Deduction associated with fsuppsssupp . (Contributed by SN, 6-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsuppsssuppgd.g | |- ( ph -> G e. V ) |
|
fsuppsssuppgd.z | |- ( ph -> Z e. W ) |
||
fsuppsssuppgd.1 | |- ( ph -> Fun G ) |
||
fsuppsssuppgd.2 | |- ( ph -> F finSupp O ) |
||
fsuppsssuppgd.3 | |- ( ph -> ( G supp Z ) C_ ( F supp O ) ) |
||
Assertion | fsuppsssuppgd | |- ( ph -> G finSupp Z ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppsssuppgd.g | |- ( ph -> G e. V ) |
|
2 | fsuppsssuppgd.z | |- ( ph -> Z e. W ) |
|
3 | fsuppsssuppgd.1 | |- ( ph -> Fun G ) |
|
4 | fsuppsssuppgd.2 | |- ( ph -> F finSupp O ) |
|
5 | fsuppsssuppgd.3 | |- ( ph -> ( G supp Z ) C_ ( F supp O ) ) |
|
6 | 4 | fsuppimpd | |- ( ph -> ( F supp O ) e. Fin ) |
7 | suppssfifsupp | |- ( ( ( G e. V /\ Fun G /\ Z e. W ) /\ ( ( F supp O ) e. Fin /\ ( G supp Z ) C_ ( F supp O ) ) ) -> G finSupp Z ) |
|
8 | 1 3 2 6 5 7 | syl32anc | |- ( ph -> G finSupp Z ) |