Metamath Proof Explorer


Theorem fsuppxpfi

Description: The cartesian product of two finitely supported functions is finite. (Contributed by AV, 17-Jul-2019)

Ref Expression
Assertion fsuppxpfi
|- ( ( F finSupp Z /\ G finSupp Z ) -> ( ( F supp Z ) X. ( G supp Z ) ) e. Fin )

Proof

Step Hyp Ref Expression
1 id
 |-  ( F finSupp Z -> F finSupp Z )
2 1 fsuppimpd
 |-  ( F finSupp Z -> ( F supp Z ) e. Fin )
3 id
 |-  ( G finSupp Z -> G finSupp Z )
4 3 fsuppimpd
 |-  ( G finSupp Z -> ( G supp Z ) e. Fin )
5 xpfi
 |-  ( ( ( F supp Z ) e. Fin /\ ( G supp Z ) e. Fin ) -> ( ( F supp Z ) X. ( G supp Z ) ) e. Fin )
6 2 4 5 syl2an
 |-  ( ( F finSupp Z /\ G finSupp Z ) -> ( ( F supp Z ) X. ( G supp Z ) ) e. Fin )