Step |
Hyp |
Ref |
Expression |
1 |
|
fta1.1 |
|- R = ( `' F " { 0 } ) |
2 |
|
eqid |
|- ( deg ` F ) = ( deg ` F ) |
3 |
|
dgrcl |
|- ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) |
4 |
3
|
adantr |
|- ( ( F e. ( Poly ` S ) /\ F =/= 0p ) -> ( deg ` F ) e. NN0 ) |
5 |
|
eqeq2 |
|- ( x = 0 -> ( ( deg ` f ) = x <-> ( deg ` f ) = 0 ) ) |
6 |
5
|
imbi1d |
|- ( x = 0 -> ( ( ( deg ` f ) = x -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> ( ( deg ` f ) = 0 -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
7 |
6
|
ralbidv |
|- ( x = 0 -> ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = x -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = 0 -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
8 |
|
eqeq2 |
|- ( x = d -> ( ( deg ` f ) = x <-> ( deg ` f ) = d ) ) |
9 |
8
|
imbi1d |
|- ( x = d -> ( ( ( deg ` f ) = x -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> ( ( deg ` f ) = d -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
10 |
9
|
ralbidv |
|- ( x = d -> ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = x -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = d -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
11 |
|
eqeq2 |
|- ( x = ( d + 1 ) -> ( ( deg ` f ) = x <-> ( deg ` f ) = ( d + 1 ) ) ) |
12 |
11
|
imbi1d |
|- ( x = ( d + 1 ) -> ( ( ( deg ` f ) = x -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> ( ( deg ` f ) = ( d + 1 ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
13 |
12
|
ralbidv |
|- ( x = ( d + 1 ) -> ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = x -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( d + 1 ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
14 |
|
eqeq2 |
|- ( x = ( deg ` F ) -> ( ( deg ` f ) = x <-> ( deg ` f ) = ( deg ` F ) ) ) |
15 |
14
|
imbi1d |
|- ( x = ( deg ` F ) -> ( ( ( deg ` f ) = x -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> ( ( deg ` f ) = ( deg ` F ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
16 |
15
|
ralbidv |
|- ( x = ( deg ` F ) -> ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = x -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( deg ` F ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
17 |
|
eldifsni |
|- ( f e. ( ( Poly ` CC ) \ { 0p } ) -> f =/= 0p ) |
18 |
17
|
adantr |
|- ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) -> f =/= 0p ) |
19 |
|
simplr |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> ( deg ` f ) = 0 ) |
20 |
|
eldifi |
|- ( f e. ( ( Poly ` CC ) \ { 0p } ) -> f e. ( Poly ` CC ) ) |
21 |
20
|
ad2antrr |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> f e. ( Poly ` CC ) ) |
22 |
|
0dgrb |
|- ( f e. ( Poly ` CC ) -> ( ( deg ` f ) = 0 <-> f = ( CC X. { ( f ` 0 ) } ) ) ) |
23 |
21 22
|
syl |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> ( ( deg ` f ) = 0 <-> f = ( CC X. { ( f ` 0 ) } ) ) ) |
24 |
19 23
|
mpbid |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> f = ( CC X. { ( f ` 0 ) } ) ) |
25 |
24
|
fveq1d |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> ( f ` x ) = ( ( CC X. { ( f ` 0 ) } ) ` x ) ) |
26 |
20
|
adantr |
|- ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) -> f e. ( Poly ` CC ) ) |
27 |
|
plyf |
|- ( f e. ( Poly ` CC ) -> f : CC --> CC ) |
28 |
|
ffn |
|- ( f : CC --> CC -> f Fn CC ) |
29 |
|
fniniseg |
|- ( f Fn CC -> ( x e. ( `' f " { 0 } ) <-> ( x e. CC /\ ( f ` x ) = 0 ) ) ) |
30 |
26 27 28 29
|
4syl |
|- ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) -> ( x e. ( `' f " { 0 } ) <-> ( x e. CC /\ ( f ` x ) = 0 ) ) ) |
31 |
30
|
biimpa |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> ( x e. CC /\ ( f ` x ) = 0 ) ) |
32 |
31
|
simprd |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> ( f ` x ) = 0 ) |
33 |
31
|
simpld |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> x e. CC ) |
34 |
|
fvex |
|- ( f ` 0 ) e. _V |
35 |
34
|
fvconst2 |
|- ( x e. CC -> ( ( CC X. { ( f ` 0 ) } ) ` x ) = ( f ` 0 ) ) |
36 |
33 35
|
syl |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> ( ( CC X. { ( f ` 0 ) } ) ` x ) = ( f ` 0 ) ) |
37 |
25 32 36
|
3eqtr3rd |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> ( f ` 0 ) = 0 ) |
38 |
37
|
sneqd |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> { ( f ` 0 ) } = { 0 } ) |
39 |
38
|
xpeq2d |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> ( CC X. { ( f ` 0 ) } ) = ( CC X. { 0 } ) ) |
40 |
24 39
|
eqtrd |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> f = ( CC X. { 0 } ) ) |
41 |
|
df-0p |
|- 0p = ( CC X. { 0 } ) |
42 |
40 41
|
eqtr4di |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> f = 0p ) |
43 |
42
|
ex |
|- ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) -> ( x e. ( `' f " { 0 } ) -> f = 0p ) ) |
44 |
43
|
necon3ad |
|- ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) -> ( f =/= 0p -> -. x e. ( `' f " { 0 } ) ) ) |
45 |
18 44
|
mpd |
|- ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) -> -. x e. ( `' f " { 0 } ) ) |
46 |
45
|
eq0rdv |
|- ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) -> ( `' f " { 0 } ) = (/) ) |
47 |
46
|
ex |
|- ( f e. ( ( Poly ` CC ) \ { 0p } ) -> ( ( deg ` f ) = 0 -> ( `' f " { 0 } ) = (/) ) ) |
48 |
|
dgrcl |
|- ( f e. ( Poly ` CC ) -> ( deg ` f ) e. NN0 ) |
49 |
|
nn0ge0 |
|- ( ( deg ` f ) e. NN0 -> 0 <_ ( deg ` f ) ) |
50 |
20 48 49
|
3syl |
|- ( f e. ( ( Poly ` CC ) \ { 0p } ) -> 0 <_ ( deg ` f ) ) |
51 |
|
id |
|- ( ( `' f " { 0 } ) = (/) -> ( `' f " { 0 } ) = (/) ) |
52 |
|
0fin |
|- (/) e. Fin |
53 |
51 52
|
eqeltrdi |
|- ( ( `' f " { 0 } ) = (/) -> ( `' f " { 0 } ) e. Fin ) |
54 |
53
|
biantrurd |
|- ( ( `' f " { 0 } ) = (/) -> ( ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) <-> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) |
55 |
|
fveq2 |
|- ( ( `' f " { 0 } ) = (/) -> ( # ` ( `' f " { 0 } ) ) = ( # ` (/) ) ) |
56 |
|
hash0 |
|- ( # ` (/) ) = 0 |
57 |
55 56
|
eqtrdi |
|- ( ( `' f " { 0 } ) = (/) -> ( # ` ( `' f " { 0 } ) ) = 0 ) |
58 |
57
|
breq1d |
|- ( ( `' f " { 0 } ) = (/) -> ( ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) <-> 0 <_ ( deg ` f ) ) ) |
59 |
54 58
|
bitr3d |
|- ( ( `' f " { 0 } ) = (/) -> ( ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) <-> 0 <_ ( deg ` f ) ) ) |
60 |
50 59
|
syl5ibrcom |
|- ( f e. ( ( Poly ` CC ) \ { 0p } ) -> ( ( `' f " { 0 } ) = (/) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) |
61 |
47 60
|
syld |
|- ( f e. ( ( Poly ` CC ) \ { 0p } ) -> ( ( deg ` f ) = 0 -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) |
62 |
61
|
rgen |
|- A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = 0 -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) |
63 |
|
fveqeq2 |
|- ( f = g -> ( ( deg ` f ) = d <-> ( deg ` g ) = d ) ) |
64 |
|
cnveq |
|- ( f = g -> `' f = `' g ) |
65 |
64
|
imaeq1d |
|- ( f = g -> ( `' f " { 0 } ) = ( `' g " { 0 } ) ) |
66 |
65
|
eleq1d |
|- ( f = g -> ( ( `' f " { 0 } ) e. Fin <-> ( `' g " { 0 } ) e. Fin ) ) |
67 |
65
|
fveq2d |
|- ( f = g -> ( # ` ( `' f " { 0 } ) ) = ( # ` ( `' g " { 0 } ) ) ) |
68 |
|
fveq2 |
|- ( f = g -> ( deg ` f ) = ( deg ` g ) ) |
69 |
67 68
|
breq12d |
|- ( f = g -> ( ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) <-> ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) |
70 |
66 69
|
anbi12d |
|- ( f = g -> ( ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) <-> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) |
71 |
63 70
|
imbi12d |
|- ( f = g -> ( ( ( deg ` f ) = d -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) ) |
72 |
71
|
cbvralvw |
|- ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = d -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) |
73 |
50
|
ad2antlr |
|- ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) -> 0 <_ ( deg ` f ) ) |
74 |
73 59
|
syl5ibrcom |
|- ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) -> ( ( `' f " { 0 } ) = (/) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) |
75 |
74
|
a1dd |
|- ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) -> ( ( `' f " { 0 } ) = (/) -> ( A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
76 |
|
n0 |
|- ( ( `' f " { 0 } ) =/= (/) <-> E. x x e. ( `' f " { 0 } ) ) |
77 |
|
eqid |
|- ( `' f " { 0 } ) = ( `' f " { 0 } ) |
78 |
|
simplll |
|- ( ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) /\ ( x e. ( `' f " { 0 } ) /\ A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) ) -> d e. NN0 ) |
79 |
|
simpllr |
|- ( ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) /\ ( x e. ( `' f " { 0 } ) /\ A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) ) -> f e. ( ( Poly ` CC ) \ { 0p } ) ) |
80 |
|
simplr |
|- ( ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) /\ ( x e. ( `' f " { 0 } ) /\ A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) ) -> ( deg ` f ) = ( d + 1 ) ) |
81 |
|
simprl |
|- ( ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) /\ ( x e. ( `' f " { 0 } ) /\ A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) ) -> x e. ( `' f " { 0 } ) ) |
82 |
|
simprr |
|- ( ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) /\ ( x e. ( `' f " { 0 } ) /\ A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) ) -> A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) |
83 |
77 78 79 80 81 82
|
fta1lem |
|- ( ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) /\ ( x e. ( `' f " { 0 } ) /\ A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) |
84 |
83
|
exp32 |
|- ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) -> ( x e. ( `' f " { 0 } ) -> ( A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
85 |
84
|
exlimdv |
|- ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) -> ( E. x x e. ( `' f " { 0 } ) -> ( A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
86 |
76 85
|
syl5bi |
|- ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) -> ( ( `' f " { 0 } ) =/= (/) -> ( A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
87 |
75 86
|
pm2.61dne |
|- ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) -> ( A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) |
88 |
87
|
ex |
|- ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) -> ( ( deg ` f ) = ( d + 1 ) -> ( A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
89 |
88
|
com23 |
|- ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) -> ( A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) -> ( ( deg ` f ) = ( d + 1 ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
90 |
89
|
ralrimdva |
|- ( d e. NN0 -> ( A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) -> A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( d + 1 ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
91 |
72 90
|
syl5bi |
|- ( d e. NN0 -> ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = d -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) -> A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( d + 1 ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
92 |
7 10 13 16 62 91
|
nn0ind |
|- ( ( deg ` F ) e. NN0 -> A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( deg ` F ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) |
93 |
4 92
|
syl |
|- ( ( F e. ( Poly ` S ) /\ F =/= 0p ) -> A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( deg ` F ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) |
94 |
|
plyssc |
|- ( Poly ` S ) C_ ( Poly ` CC ) |
95 |
94
|
sseli |
|- ( F e. ( Poly ` S ) -> F e. ( Poly ` CC ) ) |
96 |
|
eldifsn |
|- ( F e. ( ( Poly ` CC ) \ { 0p } ) <-> ( F e. ( Poly ` CC ) /\ F =/= 0p ) ) |
97 |
|
fveqeq2 |
|- ( f = F -> ( ( deg ` f ) = ( deg ` F ) <-> ( deg ` F ) = ( deg ` F ) ) ) |
98 |
|
cnveq |
|- ( f = F -> `' f = `' F ) |
99 |
98
|
imaeq1d |
|- ( f = F -> ( `' f " { 0 } ) = ( `' F " { 0 } ) ) |
100 |
99 1
|
eqtr4di |
|- ( f = F -> ( `' f " { 0 } ) = R ) |
101 |
100
|
eleq1d |
|- ( f = F -> ( ( `' f " { 0 } ) e. Fin <-> R e. Fin ) ) |
102 |
100
|
fveq2d |
|- ( f = F -> ( # ` ( `' f " { 0 } ) ) = ( # ` R ) ) |
103 |
|
fveq2 |
|- ( f = F -> ( deg ` f ) = ( deg ` F ) ) |
104 |
102 103
|
breq12d |
|- ( f = F -> ( ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) <-> ( # ` R ) <_ ( deg ` F ) ) ) |
105 |
101 104
|
anbi12d |
|- ( f = F -> ( ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) <-> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) ) |
106 |
97 105
|
imbi12d |
|- ( f = F -> ( ( ( deg ` f ) = ( deg ` F ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> ( ( deg ` F ) = ( deg ` F ) -> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) ) ) |
107 |
106
|
rspcv |
|- ( F e. ( ( Poly ` CC ) \ { 0p } ) -> ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( deg ` F ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) -> ( ( deg ` F ) = ( deg ` F ) -> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) ) ) |
108 |
96 107
|
sylbir |
|- ( ( F e. ( Poly ` CC ) /\ F =/= 0p ) -> ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( deg ` F ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) -> ( ( deg ` F ) = ( deg ` F ) -> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) ) ) |
109 |
95 108
|
sylan |
|- ( ( F e. ( Poly ` S ) /\ F =/= 0p ) -> ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( deg ` F ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) -> ( ( deg ` F ) = ( deg ` F ) -> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) ) ) |
110 |
93 109
|
mpd |
|- ( ( F e. ( Poly ` S ) /\ F =/= 0p ) -> ( ( deg ` F ) = ( deg ` F ) -> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) ) |
111 |
2 110
|
mpi |
|- ( ( F e. ( Poly ` S ) /\ F =/= 0p ) -> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) |