| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fta1.1 |  |-  R = ( `' F " { 0 } ) | 
						
							| 2 |  | eqid |  |-  ( deg ` F ) = ( deg ` F ) | 
						
							| 3 |  | dgrcl |  |-  ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) | 
						
							| 4 | 3 | adantr |  |-  ( ( F e. ( Poly ` S ) /\ F =/= 0p ) -> ( deg ` F ) e. NN0 ) | 
						
							| 5 |  | eqeq2 |  |-  ( x = 0 -> ( ( deg ` f ) = x <-> ( deg ` f ) = 0 ) ) | 
						
							| 6 | 5 | imbi1d |  |-  ( x = 0 -> ( ( ( deg ` f ) = x -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> ( ( deg ` f ) = 0 -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) | 
						
							| 7 | 6 | ralbidv |  |-  ( x = 0 -> ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = x -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = 0 -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) | 
						
							| 8 |  | eqeq2 |  |-  ( x = d -> ( ( deg ` f ) = x <-> ( deg ` f ) = d ) ) | 
						
							| 9 | 8 | imbi1d |  |-  ( x = d -> ( ( ( deg ` f ) = x -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> ( ( deg ` f ) = d -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) | 
						
							| 10 | 9 | ralbidv |  |-  ( x = d -> ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = x -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = d -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) | 
						
							| 11 |  | eqeq2 |  |-  ( x = ( d + 1 ) -> ( ( deg ` f ) = x <-> ( deg ` f ) = ( d + 1 ) ) ) | 
						
							| 12 | 11 | imbi1d |  |-  ( x = ( d + 1 ) -> ( ( ( deg ` f ) = x -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> ( ( deg ` f ) = ( d + 1 ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) | 
						
							| 13 | 12 | ralbidv |  |-  ( x = ( d + 1 ) -> ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = x -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( d + 1 ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) | 
						
							| 14 |  | eqeq2 |  |-  ( x = ( deg ` F ) -> ( ( deg ` f ) = x <-> ( deg ` f ) = ( deg ` F ) ) ) | 
						
							| 15 | 14 | imbi1d |  |-  ( x = ( deg ` F ) -> ( ( ( deg ` f ) = x -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> ( ( deg ` f ) = ( deg ` F ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) | 
						
							| 16 | 15 | ralbidv |  |-  ( x = ( deg ` F ) -> ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = x -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( deg ` F ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) | 
						
							| 17 |  | eldifsni |  |-  ( f e. ( ( Poly ` CC ) \ { 0p } ) -> f =/= 0p ) | 
						
							| 18 | 17 | adantr |  |-  ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) -> f =/= 0p ) | 
						
							| 19 |  | simplr |  |-  ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> ( deg ` f ) = 0 ) | 
						
							| 20 |  | eldifi |  |-  ( f e. ( ( Poly ` CC ) \ { 0p } ) -> f e. ( Poly ` CC ) ) | 
						
							| 21 | 20 | ad2antrr |  |-  ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> f e. ( Poly ` CC ) ) | 
						
							| 22 |  | 0dgrb |  |-  ( f e. ( Poly ` CC ) -> ( ( deg ` f ) = 0 <-> f = ( CC X. { ( f ` 0 ) } ) ) ) | 
						
							| 23 | 21 22 | syl |  |-  ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> ( ( deg ` f ) = 0 <-> f = ( CC X. { ( f ` 0 ) } ) ) ) | 
						
							| 24 | 19 23 | mpbid |  |-  ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> f = ( CC X. { ( f ` 0 ) } ) ) | 
						
							| 25 | 24 | fveq1d |  |-  ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> ( f ` x ) = ( ( CC X. { ( f ` 0 ) } ) ` x ) ) | 
						
							| 26 | 20 | adantr |  |-  ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) -> f e. ( Poly ` CC ) ) | 
						
							| 27 |  | plyf |  |-  ( f e. ( Poly ` CC ) -> f : CC --> CC ) | 
						
							| 28 |  | ffn |  |-  ( f : CC --> CC -> f Fn CC ) | 
						
							| 29 |  | fniniseg |  |-  ( f Fn CC -> ( x e. ( `' f " { 0 } ) <-> ( x e. CC /\ ( f ` x ) = 0 ) ) ) | 
						
							| 30 | 26 27 28 29 | 4syl |  |-  ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) -> ( x e. ( `' f " { 0 } ) <-> ( x e. CC /\ ( f ` x ) = 0 ) ) ) | 
						
							| 31 | 30 | biimpa |  |-  ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> ( x e. CC /\ ( f ` x ) = 0 ) ) | 
						
							| 32 | 31 | simprd |  |-  ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> ( f ` x ) = 0 ) | 
						
							| 33 | 31 | simpld |  |-  ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> x e. CC ) | 
						
							| 34 |  | fvex |  |-  ( f ` 0 ) e. _V | 
						
							| 35 | 34 | fvconst2 |  |-  ( x e. CC -> ( ( CC X. { ( f ` 0 ) } ) ` x ) = ( f ` 0 ) ) | 
						
							| 36 | 33 35 | syl |  |-  ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> ( ( CC X. { ( f ` 0 ) } ) ` x ) = ( f ` 0 ) ) | 
						
							| 37 | 25 32 36 | 3eqtr3rd |  |-  ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> ( f ` 0 ) = 0 ) | 
						
							| 38 | 37 | sneqd |  |-  ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> { ( f ` 0 ) } = { 0 } ) | 
						
							| 39 | 38 | xpeq2d |  |-  ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> ( CC X. { ( f ` 0 ) } ) = ( CC X. { 0 } ) ) | 
						
							| 40 | 24 39 | eqtrd |  |-  ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> f = ( CC X. { 0 } ) ) | 
						
							| 41 |  | df-0p |  |-  0p = ( CC X. { 0 } ) | 
						
							| 42 | 40 41 | eqtr4di |  |-  ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> f = 0p ) | 
						
							| 43 | 42 | ex |  |-  ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) -> ( x e. ( `' f " { 0 } ) -> f = 0p ) ) | 
						
							| 44 | 43 | necon3ad |  |-  ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) -> ( f =/= 0p -> -. x e. ( `' f " { 0 } ) ) ) | 
						
							| 45 | 18 44 | mpd |  |-  ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) -> -. x e. ( `' f " { 0 } ) ) | 
						
							| 46 | 45 | eq0rdv |  |-  ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) -> ( `' f " { 0 } ) = (/) ) | 
						
							| 47 | 46 | ex |  |-  ( f e. ( ( Poly ` CC ) \ { 0p } ) -> ( ( deg ` f ) = 0 -> ( `' f " { 0 } ) = (/) ) ) | 
						
							| 48 |  | dgrcl |  |-  ( f e. ( Poly ` CC ) -> ( deg ` f ) e. NN0 ) | 
						
							| 49 |  | nn0ge0 |  |-  ( ( deg ` f ) e. NN0 -> 0 <_ ( deg ` f ) ) | 
						
							| 50 | 20 48 49 | 3syl |  |-  ( f e. ( ( Poly ` CC ) \ { 0p } ) -> 0 <_ ( deg ` f ) ) | 
						
							| 51 |  | id |  |-  ( ( `' f " { 0 } ) = (/) -> ( `' f " { 0 } ) = (/) ) | 
						
							| 52 |  | 0fi |  |-  (/) e. Fin | 
						
							| 53 | 51 52 | eqeltrdi |  |-  ( ( `' f " { 0 } ) = (/) -> ( `' f " { 0 } ) e. Fin ) | 
						
							| 54 | 53 | biantrurd |  |-  ( ( `' f " { 0 } ) = (/) -> ( ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) <-> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) | 
						
							| 55 |  | fveq2 |  |-  ( ( `' f " { 0 } ) = (/) -> ( # ` ( `' f " { 0 } ) ) = ( # ` (/) ) ) | 
						
							| 56 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 57 | 55 56 | eqtrdi |  |-  ( ( `' f " { 0 } ) = (/) -> ( # ` ( `' f " { 0 } ) ) = 0 ) | 
						
							| 58 | 57 | breq1d |  |-  ( ( `' f " { 0 } ) = (/) -> ( ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) <-> 0 <_ ( deg ` f ) ) ) | 
						
							| 59 | 54 58 | bitr3d |  |-  ( ( `' f " { 0 } ) = (/) -> ( ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) <-> 0 <_ ( deg ` f ) ) ) | 
						
							| 60 | 50 59 | syl5ibrcom |  |-  ( f e. ( ( Poly ` CC ) \ { 0p } ) -> ( ( `' f " { 0 } ) = (/) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) | 
						
							| 61 | 47 60 | syld |  |-  ( f e. ( ( Poly ` CC ) \ { 0p } ) -> ( ( deg ` f ) = 0 -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) | 
						
							| 62 | 61 | rgen |  |-  A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = 0 -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) | 
						
							| 63 |  | fveqeq2 |  |-  ( f = g -> ( ( deg ` f ) = d <-> ( deg ` g ) = d ) ) | 
						
							| 64 |  | cnveq |  |-  ( f = g -> `' f = `' g ) | 
						
							| 65 | 64 | imaeq1d |  |-  ( f = g -> ( `' f " { 0 } ) = ( `' g " { 0 } ) ) | 
						
							| 66 | 65 | eleq1d |  |-  ( f = g -> ( ( `' f " { 0 } ) e. Fin <-> ( `' g " { 0 } ) e. Fin ) ) | 
						
							| 67 | 65 | fveq2d |  |-  ( f = g -> ( # ` ( `' f " { 0 } ) ) = ( # ` ( `' g " { 0 } ) ) ) | 
						
							| 68 |  | fveq2 |  |-  ( f = g -> ( deg ` f ) = ( deg ` g ) ) | 
						
							| 69 | 67 68 | breq12d |  |-  ( f = g -> ( ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) <-> ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) | 
						
							| 70 | 66 69 | anbi12d |  |-  ( f = g -> ( ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) <-> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) | 
						
							| 71 | 63 70 | imbi12d |  |-  ( f = g -> ( ( ( deg ` f ) = d -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) ) | 
						
							| 72 | 71 | cbvralvw |  |-  ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = d -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) | 
						
							| 73 | 50 | ad2antlr |  |-  ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) -> 0 <_ ( deg ` f ) ) | 
						
							| 74 | 73 59 | syl5ibrcom |  |-  ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) -> ( ( `' f " { 0 } ) = (/) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) | 
						
							| 75 | 74 | a1dd |  |-  ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) -> ( ( `' f " { 0 } ) = (/) -> ( A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) | 
						
							| 76 |  | n0 |  |-  ( ( `' f " { 0 } ) =/= (/) <-> E. x x e. ( `' f " { 0 } ) ) | 
						
							| 77 |  | eqid |  |-  ( `' f " { 0 } ) = ( `' f " { 0 } ) | 
						
							| 78 |  | simplll |  |-  ( ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) /\ ( x e. ( `' f " { 0 } ) /\ A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) ) -> d e. NN0 ) | 
						
							| 79 |  | simpllr |  |-  ( ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) /\ ( x e. ( `' f " { 0 } ) /\ A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) ) -> f e. ( ( Poly ` CC ) \ { 0p } ) ) | 
						
							| 80 |  | simplr |  |-  ( ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) /\ ( x e. ( `' f " { 0 } ) /\ A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) ) -> ( deg ` f ) = ( d + 1 ) ) | 
						
							| 81 |  | simprl |  |-  ( ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) /\ ( x e. ( `' f " { 0 } ) /\ A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) ) -> x e. ( `' f " { 0 } ) ) | 
						
							| 82 |  | simprr |  |-  ( ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) /\ ( x e. ( `' f " { 0 } ) /\ A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) ) -> A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) | 
						
							| 83 | 77 78 79 80 81 82 | fta1lem |  |-  ( ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) /\ ( x e. ( `' f " { 0 } ) /\ A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) | 
						
							| 84 | 83 | exp32 |  |-  ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) -> ( x e. ( `' f " { 0 } ) -> ( A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) | 
						
							| 85 | 84 | exlimdv |  |-  ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) -> ( E. x x e. ( `' f " { 0 } ) -> ( A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) | 
						
							| 86 | 76 85 | biimtrid |  |-  ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) -> ( ( `' f " { 0 } ) =/= (/) -> ( A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) | 
						
							| 87 | 75 86 | pm2.61dne |  |-  ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) -> ( A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) | 
						
							| 88 | 87 | ex |  |-  ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) -> ( ( deg ` f ) = ( d + 1 ) -> ( A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) | 
						
							| 89 | 88 | com23 |  |-  ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) -> ( A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) -> ( ( deg ` f ) = ( d + 1 ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) | 
						
							| 90 | 89 | ralrimdva |  |-  ( d e. NN0 -> ( A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) -> A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( d + 1 ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) | 
						
							| 91 | 72 90 | biimtrid |  |-  ( d e. NN0 -> ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = d -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) -> A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( d + 1 ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) | 
						
							| 92 | 7 10 13 16 62 91 | nn0ind |  |-  ( ( deg ` F ) e. NN0 -> A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( deg ` F ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) | 
						
							| 93 | 4 92 | syl |  |-  ( ( F e. ( Poly ` S ) /\ F =/= 0p ) -> A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( deg ` F ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) | 
						
							| 94 |  | plyssc |  |-  ( Poly ` S ) C_ ( Poly ` CC ) | 
						
							| 95 | 94 | sseli |  |-  ( F e. ( Poly ` S ) -> F e. ( Poly ` CC ) ) | 
						
							| 96 |  | eldifsn |  |-  ( F e. ( ( Poly ` CC ) \ { 0p } ) <-> ( F e. ( Poly ` CC ) /\ F =/= 0p ) ) | 
						
							| 97 |  | fveqeq2 |  |-  ( f = F -> ( ( deg ` f ) = ( deg ` F ) <-> ( deg ` F ) = ( deg ` F ) ) ) | 
						
							| 98 |  | cnveq |  |-  ( f = F -> `' f = `' F ) | 
						
							| 99 | 98 | imaeq1d |  |-  ( f = F -> ( `' f " { 0 } ) = ( `' F " { 0 } ) ) | 
						
							| 100 | 99 1 | eqtr4di |  |-  ( f = F -> ( `' f " { 0 } ) = R ) | 
						
							| 101 | 100 | eleq1d |  |-  ( f = F -> ( ( `' f " { 0 } ) e. Fin <-> R e. Fin ) ) | 
						
							| 102 | 100 | fveq2d |  |-  ( f = F -> ( # ` ( `' f " { 0 } ) ) = ( # ` R ) ) | 
						
							| 103 |  | fveq2 |  |-  ( f = F -> ( deg ` f ) = ( deg ` F ) ) | 
						
							| 104 | 102 103 | breq12d |  |-  ( f = F -> ( ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) <-> ( # ` R ) <_ ( deg ` F ) ) ) | 
						
							| 105 | 101 104 | anbi12d |  |-  ( f = F -> ( ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) <-> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) ) | 
						
							| 106 | 97 105 | imbi12d |  |-  ( f = F -> ( ( ( deg ` f ) = ( deg ` F ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> ( ( deg ` F ) = ( deg ` F ) -> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) ) ) | 
						
							| 107 | 106 | rspcv |  |-  ( F e. ( ( Poly ` CC ) \ { 0p } ) -> ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( deg ` F ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) -> ( ( deg ` F ) = ( deg ` F ) -> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) ) ) | 
						
							| 108 | 96 107 | sylbir |  |-  ( ( F e. ( Poly ` CC ) /\ F =/= 0p ) -> ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( deg ` F ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) -> ( ( deg ` F ) = ( deg ` F ) -> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) ) ) | 
						
							| 109 | 95 108 | sylan |  |-  ( ( F e. ( Poly ` S ) /\ F =/= 0p ) -> ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( deg ` F ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) -> ( ( deg ` F ) = ( deg ` F ) -> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) ) ) | 
						
							| 110 | 93 109 | mpd |  |-  ( ( F e. ( Poly ` S ) /\ F =/= 0p ) -> ( ( deg ` F ) = ( deg ` F ) -> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) ) | 
						
							| 111 | 2 110 | mpi |  |-  ( ( F e. ( Poly ` S ) /\ F =/= 0p ) -> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) |