| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fta1b.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | fta1b.b |  |-  B = ( Base ` P ) | 
						
							| 3 |  | fta1b.d |  |-  D = ( deg1 ` R ) | 
						
							| 4 |  | fta1b.o |  |-  O = ( eval1 ` R ) | 
						
							| 5 |  | fta1b.w |  |-  W = ( 0g ` R ) | 
						
							| 6 |  | fta1b.z |  |-  .0. = ( 0g ` P ) | 
						
							| 7 |  | fta1blem.k |  |-  K = ( Base ` R ) | 
						
							| 8 |  | fta1blem.t |  |-  .X. = ( .r ` R ) | 
						
							| 9 |  | fta1blem.x |  |-  X = ( var1 ` R ) | 
						
							| 10 |  | fta1blem.s |  |-  .x. = ( .s ` P ) | 
						
							| 11 |  | fta1blem.1 |  |-  ( ph -> R e. CRing ) | 
						
							| 12 |  | fta1blem.2 |  |-  ( ph -> M e. K ) | 
						
							| 13 |  | fta1blem.3 |  |-  ( ph -> N e. K ) | 
						
							| 14 |  | fta1blem.4 |  |-  ( ph -> ( M .X. N ) = W ) | 
						
							| 15 |  | fta1blem.5 |  |-  ( ph -> M =/= W ) | 
						
							| 16 |  | fta1blem.6 |  |-  ( ph -> ( ( M .x. X ) e. ( B \ { .0. } ) -> ( # ` ( `' ( O ` ( M .x. X ) ) " { W } ) ) <_ ( D ` ( M .x. X ) ) ) ) | 
						
							| 17 | 4 9 7 1 2 11 13 | evl1vard |  |-  ( ph -> ( X e. B /\ ( ( O ` X ) ` N ) = N ) ) | 
						
							| 18 | 4 1 7 2 11 13 17 12 10 8 | evl1vsd |  |-  ( ph -> ( ( M .x. X ) e. B /\ ( ( O ` ( M .x. X ) ) ` N ) = ( M .X. N ) ) ) | 
						
							| 19 | 18 | simprd |  |-  ( ph -> ( ( O ` ( M .x. X ) ) ` N ) = ( M .X. N ) ) | 
						
							| 20 | 19 14 | eqtrd |  |-  ( ph -> ( ( O ` ( M .x. X ) ) ` N ) = W ) | 
						
							| 21 |  | eqid |  |-  ( R ^s K ) = ( R ^s K ) | 
						
							| 22 |  | eqid |  |-  ( Base ` ( R ^s K ) ) = ( Base ` ( R ^s K ) ) | 
						
							| 23 | 7 | fvexi |  |-  K e. _V | 
						
							| 24 | 23 | a1i |  |-  ( ph -> K e. _V ) | 
						
							| 25 | 4 1 21 7 | evl1rhm |  |-  ( R e. CRing -> O e. ( P RingHom ( R ^s K ) ) ) | 
						
							| 26 | 11 25 | syl |  |-  ( ph -> O e. ( P RingHom ( R ^s K ) ) ) | 
						
							| 27 | 2 22 | rhmf |  |-  ( O e. ( P RingHom ( R ^s K ) ) -> O : B --> ( Base ` ( R ^s K ) ) ) | 
						
							| 28 | 26 27 | syl |  |-  ( ph -> O : B --> ( Base ` ( R ^s K ) ) ) | 
						
							| 29 | 18 | simpld |  |-  ( ph -> ( M .x. X ) e. B ) | 
						
							| 30 | 28 29 | ffvelcdmd |  |-  ( ph -> ( O ` ( M .x. X ) ) e. ( Base ` ( R ^s K ) ) ) | 
						
							| 31 | 21 7 22 11 24 30 | pwselbas |  |-  ( ph -> ( O ` ( M .x. X ) ) : K --> K ) | 
						
							| 32 | 31 | ffnd |  |-  ( ph -> ( O ` ( M .x. X ) ) Fn K ) | 
						
							| 33 |  | fniniseg |  |-  ( ( O ` ( M .x. X ) ) Fn K -> ( N e. ( `' ( O ` ( M .x. X ) ) " { W } ) <-> ( N e. K /\ ( ( O ` ( M .x. X ) ) ` N ) = W ) ) ) | 
						
							| 34 | 32 33 | syl |  |-  ( ph -> ( N e. ( `' ( O ` ( M .x. X ) ) " { W } ) <-> ( N e. K /\ ( ( O ` ( M .x. X ) ) ` N ) = W ) ) ) | 
						
							| 35 | 13 20 34 | mpbir2and |  |-  ( ph -> N e. ( `' ( O ` ( M .x. X ) ) " { W } ) ) | 
						
							| 36 |  | fvex |  |-  ( O ` ( M .x. X ) ) e. _V | 
						
							| 37 | 36 | cnvex |  |-  `' ( O ` ( M .x. X ) ) e. _V | 
						
							| 38 | 37 | imaex |  |-  ( `' ( O ` ( M .x. X ) ) " { W } ) e. _V | 
						
							| 39 | 38 | a1i |  |-  ( ph -> ( `' ( O ` ( M .x. X ) ) " { W } ) e. _V ) | 
						
							| 40 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 41 | 40 | a1i |  |-  ( ph -> 1 e. NN0 ) | 
						
							| 42 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 43 | 11 42 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 44 | 9 1 2 | vr1cl |  |-  ( R e. Ring -> X e. B ) | 
						
							| 45 | 43 44 | syl |  |-  ( ph -> X e. B ) | 
						
							| 46 |  | eqid |  |-  ( mulGrp ` P ) = ( mulGrp ` P ) | 
						
							| 47 | 46 2 | mgpbas |  |-  B = ( Base ` ( mulGrp ` P ) ) | 
						
							| 48 |  | eqid |  |-  ( .g ` ( mulGrp ` P ) ) = ( .g ` ( mulGrp ` P ) ) | 
						
							| 49 | 47 48 | mulg1 |  |-  ( X e. B -> ( 1 ( .g ` ( mulGrp ` P ) ) X ) = X ) | 
						
							| 50 | 45 49 | syl |  |-  ( ph -> ( 1 ( .g ` ( mulGrp ` P ) ) X ) = X ) | 
						
							| 51 | 50 | oveq2d |  |-  ( ph -> ( M .x. ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) = ( M .x. X ) ) | 
						
							| 52 | 5 7 1 9 10 46 48 | coe1tmfv1 |  |-  ( ( R e. Ring /\ M e. K /\ 1 e. NN0 ) -> ( ( coe1 ` ( M .x. ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) ) ` 1 ) = M ) | 
						
							| 53 | 43 12 41 52 | syl3anc |  |-  ( ph -> ( ( coe1 ` ( M .x. ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) ) ` 1 ) = M ) | 
						
							| 54 | 1 6 5 | coe1z |  |-  ( R e. Ring -> ( coe1 ` .0. ) = ( NN0 X. { W } ) ) | 
						
							| 55 | 43 54 | syl |  |-  ( ph -> ( coe1 ` .0. ) = ( NN0 X. { W } ) ) | 
						
							| 56 | 55 | fveq1d |  |-  ( ph -> ( ( coe1 ` .0. ) ` 1 ) = ( ( NN0 X. { W } ) ` 1 ) ) | 
						
							| 57 | 5 | fvexi |  |-  W e. _V | 
						
							| 58 | 57 | fvconst2 |  |-  ( 1 e. NN0 -> ( ( NN0 X. { W } ) ` 1 ) = W ) | 
						
							| 59 | 40 58 | ax-mp |  |-  ( ( NN0 X. { W } ) ` 1 ) = W | 
						
							| 60 | 56 59 | eqtrdi |  |-  ( ph -> ( ( coe1 ` .0. ) ` 1 ) = W ) | 
						
							| 61 | 15 53 60 | 3netr4d |  |-  ( ph -> ( ( coe1 ` ( M .x. ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) ) ` 1 ) =/= ( ( coe1 ` .0. ) ` 1 ) ) | 
						
							| 62 |  | fveq2 |  |-  ( ( M .x. ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) = .0. -> ( coe1 ` ( M .x. ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) ) = ( coe1 ` .0. ) ) | 
						
							| 63 | 62 | fveq1d |  |-  ( ( M .x. ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) = .0. -> ( ( coe1 ` ( M .x. ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) ) ` 1 ) = ( ( coe1 ` .0. ) ` 1 ) ) | 
						
							| 64 | 63 | necon3i |  |-  ( ( ( coe1 ` ( M .x. ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) ) ` 1 ) =/= ( ( coe1 ` .0. ) ` 1 ) -> ( M .x. ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) =/= .0. ) | 
						
							| 65 | 61 64 | syl |  |-  ( ph -> ( M .x. ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) =/= .0. ) | 
						
							| 66 | 51 65 | eqnetrrd |  |-  ( ph -> ( M .x. X ) =/= .0. ) | 
						
							| 67 |  | eldifsn |  |-  ( ( M .x. X ) e. ( B \ { .0. } ) <-> ( ( M .x. X ) e. B /\ ( M .x. X ) =/= .0. ) ) | 
						
							| 68 | 29 66 67 | sylanbrc |  |-  ( ph -> ( M .x. X ) e. ( B \ { .0. } ) ) | 
						
							| 69 | 68 16 | mpd |  |-  ( ph -> ( # ` ( `' ( O ` ( M .x. X ) ) " { W } ) ) <_ ( D ` ( M .x. X ) ) ) | 
						
							| 70 | 51 | fveq2d |  |-  ( ph -> ( D ` ( M .x. ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) ) = ( D ` ( M .x. X ) ) ) | 
						
							| 71 | 3 7 1 9 10 46 48 5 | deg1tm |  |-  ( ( R e. Ring /\ ( M e. K /\ M =/= W ) /\ 1 e. NN0 ) -> ( D ` ( M .x. ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) ) = 1 ) | 
						
							| 72 | 43 12 15 41 71 | syl121anc |  |-  ( ph -> ( D ` ( M .x. ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) ) = 1 ) | 
						
							| 73 | 70 72 | eqtr3d |  |-  ( ph -> ( D ` ( M .x. X ) ) = 1 ) | 
						
							| 74 | 69 73 | breqtrd |  |-  ( ph -> ( # ` ( `' ( O ` ( M .x. X ) ) " { W } ) ) <_ 1 ) | 
						
							| 75 |  | hashbnd |  |-  ( ( ( `' ( O ` ( M .x. X ) ) " { W } ) e. _V /\ 1 e. NN0 /\ ( # ` ( `' ( O ` ( M .x. X ) ) " { W } ) ) <_ 1 ) -> ( `' ( O ` ( M .x. X ) ) " { W } ) e. Fin ) | 
						
							| 76 | 39 41 74 75 | syl3anc |  |-  ( ph -> ( `' ( O ` ( M .x. X ) ) " { W } ) e. Fin ) | 
						
							| 77 | 7 5 | ring0cl |  |-  ( R e. Ring -> W e. K ) | 
						
							| 78 | 43 77 | syl |  |-  ( ph -> W e. K ) | 
						
							| 79 |  | eqid |  |-  ( algSc ` P ) = ( algSc ` P ) | 
						
							| 80 | 1 79 7 2 | ply1sclf |  |-  ( R e. Ring -> ( algSc ` P ) : K --> B ) | 
						
							| 81 | 43 80 | syl |  |-  ( ph -> ( algSc ` P ) : K --> B ) | 
						
							| 82 | 81 12 | ffvelcdmd |  |-  ( ph -> ( ( algSc ` P ) ` M ) e. B ) | 
						
							| 83 |  | eqid |  |-  ( .r ` P ) = ( .r ` P ) | 
						
							| 84 |  | eqid |  |-  ( .r ` ( R ^s K ) ) = ( .r ` ( R ^s K ) ) | 
						
							| 85 | 2 83 84 | rhmmul |  |-  ( ( O e. ( P RingHom ( R ^s K ) ) /\ ( ( algSc ` P ) ` M ) e. B /\ X e. B ) -> ( O ` ( ( ( algSc ` P ) ` M ) ( .r ` P ) X ) ) = ( ( O ` ( ( algSc ` P ) ` M ) ) ( .r ` ( R ^s K ) ) ( O ` X ) ) ) | 
						
							| 86 | 26 82 45 85 | syl3anc |  |-  ( ph -> ( O ` ( ( ( algSc ` P ) ` M ) ( .r ` P ) X ) ) = ( ( O ` ( ( algSc ` P ) ` M ) ) ( .r ` ( R ^s K ) ) ( O ` X ) ) ) | 
						
							| 87 | 1 | ply1assa |  |-  ( R e. CRing -> P e. AssAlg ) | 
						
							| 88 | 11 87 | syl |  |-  ( ph -> P e. AssAlg ) | 
						
							| 89 | 1 | ply1sca |  |-  ( R e. CRing -> R = ( Scalar ` P ) ) | 
						
							| 90 | 11 89 | syl |  |-  ( ph -> R = ( Scalar ` P ) ) | 
						
							| 91 | 90 | fveq2d |  |-  ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) | 
						
							| 92 | 7 91 | eqtrid |  |-  ( ph -> K = ( Base ` ( Scalar ` P ) ) ) | 
						
							| 93 | 12 92 | eleqtrd |  |-  ( ph -> M e. ( Base ` ( Scalar ` P ) ) ) | 
						
							| 94 |  | eqid |  |-  ( Scalar ` P ) = ( Scalar ` P ) | 
						
							| 95 |  | eqid |  |-  ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) | 
						
							| 96 | 79 94 95 2 83 10 | asclmul1 |  |-  ( ( P e. AssAlg /\ M e. ( Base ` ( Scalar ` P ) ) /\ X e. B ) -> ( ( ( algSc ` P ) ` M ) ( .r ` P ) X ) = ( M .x. X ) ) | 
						
							| 97 | 88 93 45 96 | syl3anc |  |-  ( ph -> ( ( ( algSc ` P ) ` M ) ( .r ` P ) X ) = ( M .x. X ) ) | 
						
							| 98 | 97 | fveq2d |  |-  ( ph -> ( O ` ( ( ( algSc ` P ) ` M ) ( .r ` P ) X ) ) = ( O ` ( M .x. X ) ) ) | 
						
							| 99 | 28 82 | ffvelcdmd |  |-  ( ph -> ( O ` ( ( algSc ` P ) ` M ) ) e. ( Base ` ( R ^s K ) ) ) | 
						
							| 100 | 28 45 | ffvelcdmd |  |-  ( ph -> ( O ` X ) e. ( Base ` ( R ^s K ) ) ) | 
						
							| 101 | 21 22 11 24 99 100 8 84 | pwsmulrval |  |-  ( ph -> ( ( O ` ( ( algSc ` P ) ` M ) ) ( .r ` ( R ^s K ) ) ( O ` X ) ) = ( ( O ` ( ( algSc ` P ) ` M ) ) oF .X. ( O ` X ) ) ) | 
						
							| 102 | 4 1 7 79 | evl1sca |  |-  ( ( R e. CRing /\ M e. K ) -> ( O ` ( ( algSc ` P ) ` M ) ) = ( K X. { M } ) ) | 
						
							| 103 | 11 12 102 | syl2anc |  |-  ( ph -> ( O ` ( ( algSc ` P ) ` M ) ) = ( K X. { M } ) ) | 
						
							| 104 | 4 9 7 | evl1var |  |-  ( R e. CRing -> ( O ` X ) = ( _I |` K ) ) | 
						
							| 105 | 11 104 | syl |  |-  ( ph -> ( O ` X ) = ( _I |` K ) ) | 
						
							| 106 | 103 105 | oveq12d |  |-  ( ph -> ( ( O ` ( ( algSc ` P ) ` M ) ) oF .X. ( O ` X ) ) = ( ( K X. { M } ) oF .X. ( _I |` K ) ) ) | 
						
							| 107 | 101 106 | eqtrd |  |-  ( ph -> ( ( O ` ( ( algSc ` P ) ` M ) ) ( .r ` ( R ^s K ) ) ( O ` X ) ) = ( ( K X. { M } ) oF .X. ( _I |` K ) ) ) | 
						
							| 108 | 86 98 107 | 3eqtr3d |  |-  ( ph -> ( O ` ( M .x. X ) ) = ( ( K X. { M } ) oF .X. ( _I |` K ) ) ) | 
						
							| 109 | 108 | fveq1d |  |-  ( ph -> ( ( O ` ( M .x. X ) ) ` W ) = ( ( ( K X. { M } ) oF .X. ( _I |` K ) ) ` W ) ) | 
						
							| 110 |  | fnconstg |  |-  ( M e. K -> ( K X. { M } ) Fn K ) | 
						
							| 111 | 12 110 | syl |  |-  ( ph -> ( K X. { M } ) Fn K ) | 
						
							| 112 |  | fnresi |  |-  ( _I |` K ) Fn K | 
						
							| 113 | 112 | a1i |  |-  ( ph -> ( _I |` K ) Fn K ) | 
						
							| 114 |  | fnfvof |  |-  ( ( ( ( K X. { M } ) Fn K /\ ( _I |` K ) Fn K ) /\ ( K e. _V /\ W e. K ) ) -> ( ( ( K X. { M } ) oF .X. ( _I |` K ) ) ` W ) = ( ( ( K X. { M } ) ` W ) .X. ( ( _I |` K ) ` W ) ) ) | 
						
							| 115 | 111 113 24 78 114 | syl22anc |  |-  ( ph -> ( ( ( K X. { M } ) oF .X. ( _I |` K ) ) ` W ) = ( ( ( K X. { M } ) ` W ) .X. ( ( _I |` K ) ` W ) ) ) | 
						
							| 116 |  | fvconst2g |  |-  ( ( M e. K /\ W e. K ) -> ( ( K X. { M } ) ` W ) = M ) | 
						
							| 117 | 12 78 116 | syl2anc |  |-  ( ph -> ( ( K X. { M } ) ` W ) = M ) | 
						
							| 118 |  | fvresi |  |-  ( W e. K -> ( ( _I |` K ) ` W ) = W ) | 
						
							| 119 | 78 118 | syl |  |-  ( ph -> ( ( _I |` K ) ` W ) = W ) | 
						
							| 120 | 117 119 | oveq12d |  |-  ( ph -> ( ( ( K X. { M } ) ` W ) .X. ( ( _I |` K ) ` W ) ) = ( M .X. W ) ) | 
						
							| 121 | 7 8 5 | ringrz |  |-  ( ( R e. Ring /\ M e. K ) -> ( M .X. W ) = W ) | 
						
							| 122 | 43 12 121 | syl2anc |  |-  ( ph -> ( M .X. W ) = W ) | 
						
							| 123 | 120 122 | eqtrd |  |-  ( ph -> ( ( ( K X. { M } ) ` W ) .X. ( ( _I |` K ) ` W ) ) = W ) | 
						
							| 124 | 115 123 | eqtrd |  |-  ( ph -> ( ( ( K X. { M } ) oF .X. ( _I |` K ) ) ` W ) = W ) | 
						
							| 125 | 109 124 | eqtrd |  |-  ( ph -> ( ( O ` ( M .x. X ) ) ` W ) = W ) | 
						
							| 126 |  | fniniseg |  |-  ( ( O ` ( M .x. X ) ) Fn K -> ( W e. ( `' ( O ` ( M .x. X ) ) " { W } ) <-> ( W e. K /\ ( ( O ` ( M .x. X ) ) ` W ) = W ) ) ) | 
						
							| 127 | 32 126 | syl |  |-  ( ph -> ( W e. ( `' ( O ` ( M .x. X ) ) " { W } ) <-> ( W e. K /\ ( ( O ` ( M .x. X ) ) ` W ) = W ) ) ) | 
						
							| 128 | 78 125 127 | mpbir2and |  |-  ( ph -> W e. ( `' ( O ` ( M .x. X ) ) " { W } ) ) | 
						
							| 129 | 128 | snssd |  |-  ( ph -> { W } C_ ( `' ( O ` ( M .x. X ) ) " { W } ) ) | 
						
							| 130 |  | hashsng |  |-  ( W e. K -> ( # ` { W } ) = 1 ) | 
						
							| 131 | 78 130 | syl |  |-  ( ph -> ( # ` { W } ) = 1 ) | 
						
							| 132 |  | ssdomg |  |-  ( ( `' ( O ` ( M .x. X ) ) " { W } ) e. _V -> ( { W } C_ ( `' ( O ` ( M .x. X ) ) " { W } ) -> { W } ~<_ ( `' ( O ` ( M .x. X ) ) " { W } ) ) ) | 
						
							| 133 | 38 129 132 | mpsyl |  |-  ( ph -> { W } ~<_ ( `' ( O ` ( M .x. X ) ) " { W } ) ) | 
						
							| 134 |  | snfi |  |-  { W } e. Fin | 
						
							| 135 |  | hashdom |  |-  ( ( { W } e. Fin /\ ( `' ( O ` ( M .x. X ) ) " { W } ) e. _V ) -> ( ( # ` { W } ) <_ ( # ` ( `' ( O ` ( M .x. X ) ) " { W } ) ) <-> { W } ~<_ ( `' ( O ` ( M .x. X ) ) " { W } ) ) ) | 
						
							| 136 | 134 38 135 | mp2an |  |-  ( ( # ` { W } ) <_ ( # ` ( `' ( O ` ( M .x. X ) ) " { W } ) ) <-> { W } ~<_ ( `' ( O ` ( M .x. X ) ) " { W } ) ) | 
						
							| 137 | 133 136 | sylibr |  |-  ( ph -> ( # ` { W } ) <_ ( # ` ( `' ( O ` ( M .x. X ) ) " { W } ) ) ) | 
						
							| 138 | 131 137 | eqbrtrrd |  |-  ( ph -> 1 <_ ( # ` ( `' ( O ` ( M .x. X ) ) " { W } ) ) ) | 
						
							| 139 |  | hashcl |  |-  ( ( `' ( O ` ( M .x. X ) ) " { W } ) e. Fin -> ( # ` ( `' ( O ` ( M .x. X ) ) " { W } ) ) e. NN0 ) | 
						
							| 140 | 76 139 | syl |  |-  ( ph -> ( # ` ( `' ( O ` ( M .x. X ) ) " { W } ) ) e. NN0 ) | 
						
							| 141 | 140 | nn0red |  |-  ( ph -> ( # ` ( `' ( O ` ( M .x. X ) ) " { W } ) ) e. RR ) | 
						
							| 142 |  | 1re |  |-  1 e. RR | 
						
							| 143 |  | letri3 |  |-  ( ( ( # ` ( `' ( O ` ( M .x. X ) ) " { W } ) ) e. RR /\ 1 e. RR ) -> ( ( # ` ( `' ( O ` ( M .x. X ) ) " { W } ) ) = 1 <-> ( ( # ` ( `' ( O ` ( M .x. X ) ) " { W } ) ) <_ 1 /\ 1 <_ ( # ` ( `' ( O ` ( M .x. X ) ) " { W } ) ) ) ) ) | 
						
							| 144 | 141 142 143 | sylancl |  |-  ( ph -> ( ( # ` ( `' ( O ` ( M .x. X ) ) " { W } ) ) = 1 <-> ( ( # ` ( `' ( O ` ( M .x. X ) ) " { W } ) ) <_ 1 /\ 1 <_ ( # ` ( `' ( O ` ( M .x. X ) ) " { W } ) ) ) ) ) | 
						
							| 145 | 74 138 144 | mpbir2and |  |-  ( ph -> ( # ` ( `' ( O ` ( M .x. X ) ) " { W } ) ) = 1 ) | 
						
							| 146 | 131 145 | eqtr4d |  |-  ( ph -> ( # ` { W } ) = ( # ` ( `' ( O ` ( M .x. X ) ) " { W } ) ) ) | 
						
							| 147 |  | hashen |  |-  ( ( { W } e. Fin /\ ( `' ( O ` ( M .x. X ) ) " { W } ) e. Fin ) -> ( ( # ` { W } ) = ( # ` ( `' ( O ` ( M .x. X ) ) " { W } ) ) <-> { W } ~~ ( `' ( O ` ( M .x. X ) ) " { W } ) ) ) | 
						
							| 148 | 134 76 147 | sylancr |  |-  ( ph -> ( ( # ` { W } ) = ( # ` ( `' ( O ` ( M .x. X ) ) " { W } ) ) <-> { W } ~~ ( `' ( O ` ( M .x. X ) ) " { W } ) ) ) | 
						
							| 149 | 146 148 | mpbid |  |-  ( ph -> { W } ~~ ( `' ( O ` ( M .x. X ) ) " { W } ) ) | 
						
							| 150 |  | fisseneq |  |-  ( ( ( `' ( O ` ( M .x. X ) ) " { W } ) e. Fin /\ { W } C_ ( `' ( O ` ( M .x. X ) ) " { W } ) /\ { W } ~~ ( `' ( O ` ( M .x. X ) ) " { W } ) ) -> { W } = ( `' ( O ` ( M .x. X ) ) " { W } ) ) | 
						
							| 151 | 76 129 149 150 | syl3anc |  |-  ( ph -> { W } = ( `' ( O ` ( M .x. X ) ) " { W } ) ) | 
						
							| 152 | 35 151 | eleqtrrd |  |-  ( ph -> N e. { W } ) | 
						
							| 153 |  | elsni |  |-  ( N e. { W } -> N = W ) | 
						
							| 154 | 152 153 | syl |  |-  ( ph -> N = W ) |