Step |
Hyp |
Ref |
Expression |
1 |
|
fta1g.p |
|- P = ( Poly1 ` R ) |
2 |
|
fta1g.b |
|- B = ( Base ` P ) |
3 |
|
fta1g.d |
|- D = ( deg1 ` R ) |
4 |
|
fta1g.o |
|- O = ( eval1 ` R ) |
5 |
|
fta1g.w |
|- W = ( 0g ` R ) |
6 |
|
fta1g.z |
|- .0. = ( 0g ` P ) |
7 |
|
fta1g.1 |
|- ( ph -> R e. IDomn ) |
8 |
|
fta1g.2 |
|- ( ph -> F e. B ) |
9 |
|
fta1g.3 |
|- ( ph -> F =/= .0. ) |
10 |
|
eqid |
|- ( D ` F ) = ( D ` F ) |
11 |
|
fveqeq2 |
|- ( f = F -> ( ( D ` f ) = ( D ` F ) <-> ( D ` F ) = ( D ` F ) ) ) |
12 |
|
fveq2 |
|- ( f = F -> ( O ` f ) = ( O ` F ) ) |
13 |
12
|
cnveqd |
|- ( f = F -> `' ( O ` f ) = `' ( O ` F ) ) |
14 |
13
|
imaeq1d |
|- ( f = F -> ( `' ( O ` f ) " { W } ) = ( `' ( O ` F ) " { W } ) ) |
15 |
14
|
fveq2d |
|- ( f = F -> ( # ` ( `' ( O ` f ) " { W } ) ) = ( # ` ( `' ( O ` F ) " { W } ) ) ) |
16 |
|
fveq2 |
|- ( f = F -> ( D ` f ) = ( D ` F ) ) |
17 |
15 16
|
breq12d |
|- ( f = F -> ( ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) <-> ( # ` ( `' ( O ` F ) " { W } ) ) <_ ( D ` F ) ) ) |
18 |
11 17
|
imbi12d |
|- ( f = F -> ( ( ( D ` f ) = ( D ` F ) -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) <-> ( ( D ` F ) = ( D ` F ) -> ( # ` ( `' ( O ` F ) " { W } ) ) <_ ( D ` F ) ) ) ) |
19 |
|
isidom |
|- ( R e. IDomn <-> ( R e. CRing /\ R e. Domn ) ) |
20 |
19
|
simplbi |
|- ( R e. IDomn -> R e. CRing ) |
21 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
22 |
7 20 21
|
3syl |
|- ( ph -> R e. Ring ) |
23 |
3 1 6 2
|
deg1nn0cl |
|- ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> ( D ` F ) e. NN0 ) |
24 |
22 8 9 23
|
syl3anc |
|- ( ph -> ( D ` F ) e. NN0 ) |
25 |
|
eqeq2 |
|- ( x = 0 -> ( ( D ` f ) = x <-> ( D ` f ) = 0 ) ) |
26 |
25
|
imbi1d |
|- ( x = 0 -> ( ( ( D ` f ) = x -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) <-> ( ( D ` f ) = 0 -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) ) |
27 |
26
|
ralbidv |
|- ( x = 0 -> ( A. f e. B ( ( D ` f ) = x -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) <-> A. f e. B ( ( D ` f ) = 0 -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) ) |
28 |
27
|
imbi2d |
|- ( x = 0 -> ( ( R e. IDomn -> A. f e. B ( ( D ` f ) = x -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) <-> ( R e. IDomn -> A. f e. B ( ( D ` f ) = 0 -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) ) ) |
29 |
|
eqeq2 |
|- ( x = d -> ( ( D ` f ) = x <-> ( D ` f ) = d ) ) |
30 |
29
|
imbi1d |
|- ( x = d -> ( ( ( D ` f ) = x -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) <-> ( ( D ` f ) = d -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) ) |
31 |
30
|
ralbidv |
|- ( x = d -> ( A. f e. B ( ( D ` f ) = x -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) <-> A. f e. B ( ( D ` f ) = d -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) ) |
32 |
31
|
imbi2d |
|- ( x = d -> ( ( R e. IDomn -> A. f e. B ( ( D ` f ) = x -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) <-> ( R e. IDomn -> A. f e. B ( ( D ` f ) = d -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) ) ) |
33 |
|
eqeq2 |
|- ( x = ( d + 1 ) -> ( ( D ` f ) = x <-> ( D ` f ) = ( d + 1 ) ) ) |
34 |
33
|
imbi1d |
|- ( x = ( d + 1 ) -> ( ( ( D ` f ) = x -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) <-> ( ( D ` f ) = ( d + 1 ) -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) ) |
35 |
34
|
ralbidv |
|- ( x = ( d + 1 ) -> ( A. f e. B ( ( D ` f ) = x -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) <-> A. f e. B ( ( D ` f ) = ( d + 1 ) -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) ) |
36 |
35
|
imbi2d |
|- ( x = ( d + 1 ) -> ( ( R e. IDomn -> A. f e. B ( ( D ` f ) = x -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) <-> ( R e. IDomn -> A. f e. B ( ( D ` f ) = ( d + 1 ) -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) ) ) |
37 |
|
eqeq2 |
|- ( x = ( D ` F ) -> ( ( D ` f ) = x <-> ( D ` f ) = ( D ` F ) ) ) |
38 |
37
|
imbi1d |
|- ( x = ( D ` F ) -> ( ( ( D ` f ) = x -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) <-> ( ( D ` f ) = ( D ` F ) -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) ) |
39 |
38
|
ralbidv |
|- ( x = ( D ` F ) -> ( A. f e. B ( ( D ` f ) = x -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) <-> A. f e. B ( ( D ` f ) = ( D ` F ) -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) ) |
40 |
39
|
imbi2d |
|- ( x = ( D ` F ) -> ( ( R e. IDomn -> A. f e. B ( ( D ` f ) = x -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) <-> ( R e. IDomn -> A. f e. B ( ( D ` f ) = ( D ` F ) -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) ) ) |
41 |
|
simprr |
|- ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) -> ( D ` f ) = 0 ) |
42 |
|
0nn0 |
|- 0 e. NN0 |
43 |
41 42
|
eqeltrdi |
|- ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) -> ( D ` f ) e. NN0 ) |
44 |
20 21
|
syl |
|- ( R e. IDomn -> R e. Ring ) |
45 |
|
simpl |
|- ( ( f e. B /\ ( D ` f ) = 0 ) -> f e. B ) |
46 |
3 1 6 2
|
deg1nn0clb |
|- ( ( R e. Ring /\ f e. B ) -> ( f =/= .0. <-> ( D ` f ) e. NN0 ) ) |
47 |
44 45 46
|
syl2an |
|- ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) -> ( f =/= .0. <-> ( D ` f ) e. NN0 ) ) |
48 |
43 47
|
mpbird |
|- ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) -> f =/= .0. ) |
49 |
|
simplrr |
|- ( ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) /\ x e. ( `' ( O ` f ) " { W } ) ) -> ( D ` f ) = 0 ) |
50 |
|
0le0 |
|- 0 <_ 0 |
51 |
49 50
|
eqbrtrdi |
|- ( ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) /\ x e. ( `' ( O ` f ) " { W } ) ) -> ( D ` f ) <_ 0 ) |
52 |
44
|
ad2antrr |
|- ( ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) /\ x e. ( `' ( O ` f ) " { W } ) ) -> R e. Ring ) |
53 |
|
simplrl |
|- ( ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) /\ x e. ( `' ( O ` f ) " { W } ) ) -> f e. B ) |
54 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
55 |
3 1 2 54
|
deg1le0 |
|- ( ( R e. Ring /\ f e. B ) -> ( ( D ` f ) <_ 0 <-> f = ( ( algSc ` P ) ` ( ( coe1 ` f ) ` 0 ) ) ) ) |
56 |
52 53 55
|
syl2anc |
|- ( ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) /\ x e. ( `' ( O ` f ) " { W } ) ) -> ( ( D ` f ) <_ 0 <-> f = ( ( algSc ` P ) ` ( ( coe1 ` f ) ` 0 ) ) ) ) |
57 |
51 56
|
mpbid |
|- ( ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) /\ x e. ( `' ( O ` f ) " { W } ) ) -> f = ( ( algSc ` P ) ` ( ( coe1 ` f ) ` 0 ) ) ) |
58 |
57
|
fveq2d |
|- ( ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) /\ x e. ( `' ( O ` f ) " { W } ) ) -> ( O ` f ) = ( O ` ( ( algSc ` P ) ` ( ( coe1 ` f ) ` 0 ) ) ) ) |
59 |
20
|
adantr |
|- ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) -> R e. CRing ) |
60 |
59
|
adantr |
|- ( ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) /\ x e. ( `' ( O ` f ) " { W } ) ) -> R e. CRing ) |
61 |
|
eqid |
|- ( coe1 ` f ) = ( coe1 ` f ) |
62 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
63 |
61 2 1 62
|
coe1f |
|- ( f e. B -> ( coe1 ` f ) : NN0 --> ( Base ` R ) ) |
64 |
53 63
|
syl |
|- ( ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) /\ x e. ( `' ( O ` f ) " { W } ) ) -> ( coe1 ` f ) : NN0 --> ( Base ` R ) ) |
65 |
|
ffvelrn |
|- ( ( ( coe1 ` f ) : NN0 --> ( Base ` R ) /\ 0 e. NN0 ) -> ( ( coe1 ` f ) ` 0 ) e. ( Base ` R ) ) |
66 |
64 42 65
|
sylancl |
|- ( ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) /\ x e. ( `' ( O ` f ) " { W } ) ) -> ( ( coe1 ` f ) ` 0 ) e. ( Base ` R ) ) |
67 |
4 1 62 54
|
evl1sca |
|- ( ( R e. CRing /\ ( ( coe1 ` f ) ` 0 ) e. ( Base ` R ) ) -> ( O ` ( ( algSc ` P ) ` ( ( coe1 ` f ) ` 0 ) ) ) = ( ( Base ` R ) X. { ( ( coe1 ` f ) ` 0 ) } ) ) |
68 |
60 66 67
|
syl2anc |
|- ( ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) /\ x e. ( `' ( O ` f ) " { W } ) ) -> ( O ` ( ( algSc ` P ) ` ( ( coe1 ` f ) ` 0 ) ) ) = ( ( Base ` R ) X. { ( ( coe1 ` f ) ` 0 ) } ) ) |
69 |
58 68
|
eqtrd |
|- ( ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) /\ x e. ( `' ( O ` f ) " { W } ) ) -> ( O ` f ) = ( ( Base ` R ) X. { ( ( coe1 ` f ) ` 0 ) } ) ) |
70 |
69
|
fveq1d |
|- ( ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) /\ x e. ( `' ( O ` f ) " { W } ) ) -> ( ( O ` f ) ` x ) = ( ( ( Base ` R ) X. { ( ( coe1 ` f ) ` 0 ) } ) ` x ) ) |
71 |
|
eqid |
|- ( R ^s ( Base ` R ) ) = ( R ^s ( Base ` R ) ) |
72 |
|
eqid |
|- ( Base ` ( R ^s ( Base ` R ) ) ) = ( Base ` ( R ^s ( Base ` R ) ) ) |
73 |
|
simpl |
|- ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) -> R e. IDomn ) |
74 |
|
fvexd |
|- ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) -> ( Base ` R ) e. _V ) |
75 |
4 1 71 62
|
evl1rhm |
|- ( R e. CRing -> O e. ( P RingHom ( R ^s ( Base ` R ) ) ) ) |
76 |
2 72
|
rhmf |
|- ( O e. ( P RingHom ( R ^s ( Base ` R ) ) ) -> O : B --> ( Base ` ( R ^s ( Base ` R ) ) ) ) |
77 |
59 75 76
|
3syl |
|- ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) -> O : B --> ( Base ` ( R ^s ( Base ` R ) ) ) ) |
78 |
|
simprl |
|- ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) -> f e. B ) |
79 |
77 78
|
ffvelrnd |
|- ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) -> ( O ` f ) e. ( Base ` ( R ^s ( Base ` R ) ) ) ) |
80 |
71 62 72 73 74 79
|
pwselbas |
|- ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) -> ( O ` f ) : ( Base ` R ) --> ( Base ` R ) ) |
81 |
|
ffn |
|- ( ( O ` f ) : ( Base ` R ) --> ( Base ` R ) -> ( O ` f ) Fn ( Base ` R ) ) |
82 |
|
fniniseg |
|- ( ( O ` f ) Fn ( Base ` R ) -> ( x e. ( `' ( O ` f ) " { W } ) <-> ( x e. ( Base ` R ) /\ ( ( O ` f ) ` x ) = W ) ) ) |
83 |
80 81 82
|
3syl |
|- ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) -> ( x e. ( `' ( O ` f ) " { W } ) <-> ( x e. ( Base ` R ) /\ ( ( O ` f ) ` x ) = W ) ) ) |
84 |
83
|
simplbda |
|- ( ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) /\ x e. ( `' ( O ` f ) " { W } ) ) -> ( ( O ` f ) ` x ) = W ) |
85 |
83
|
simprbda |
|- ( ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) /\ x e. ( `' ( O ` f ) " { W } ) ) -> x e. ( Base ` R ) ) |
86 |
|
fvex |
|- ( ( coe1 ` f ) ` 0 ) e. _V |
87 |
86
|
fvconst2 |
|- ( x e. ( Base ` R ) -> ( ( ( Base ` R ) X. { ( ( coe1 ` f ) ` 0 ) } ) ` x ) = ( ( coe1 ` f ) ` 0 ) ) |
88 |
85 87
|
syl |
|- ( ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) /\ x e. ( `' ( O ` f ) " { W } ) ) -> ( ( ( Base ` R ) X. { ( ( coe1 ` f ) ` 0 ) } ) ` x ) = ( ( coe1 ` f ) ` 0 ) ) |
89 |
70 84 88
|
3eqtr3rd |
|- ( ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) /\ x e. ( `' ( O ` f ) " { W } ) ) -> ( ( coe1 ` f ) ` 0 ) = W ) |
90 |
89
|
fveq2d |
|- ( ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) /\ x e. ( `' ( O ` f ) " { W } ) ) -> ( ( algSc ` P ) ` ( ( coe1 ` f ) ` 0 ) ) = ( ( algSc ` P ) ` W ) ) |
91 |
1 54 5 6
|
ply1scl0 |
|- ( R e. Ring -> ( ( algSc ` P ) ` W ) = .0. ) |
92 |
52 91
|
syl |
|- ( ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) /\ x e. ( `' ( O ` f ) " { W } ) ) -> ( ( algSc ` P ) ` W ) = .0. ) |
93 |
57 90 92
|
3eqtrd |
|- ( ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) /\ x e. ( `' ( O ` f ) " { W } ) ) -> f = .0. ) |
94 |
93
|
ex |
|- ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) -> ( x e. ( `' ( O ` f ) " { W } ) -> f = .0. ) ) |
95 |
94
|
necon3ad |
|- ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) -> ( f =/= .0. -> -. x e. ( `' ( O ` f ) " { W } ) ) ) |
96 |
48 95
|
mpd |
|- ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) -> -. x e. ( `' ( O ` f ) " { W } ) ) |
97 |
96
|
eq0rdv |
|- ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) -> ( `' ( O ` f ) " { W } ) = (/) ) |
98 |
97
|
fveq2d |
|- ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) -> ( # ` ( `' ( O ` f ) " { W } ) ) = ( # ` (/) ) ) |
99 |
|
hash0 |
|- ( # ` (/) ) = 0 |
100 |
98 99
|
eqtrdi |
|- ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) -> ( # ` ( `' ( O ` f ) " { W } ) ) = 0 ) |
101 |
50 41
|
breqtrrid |
|- ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) -> 0 <_ ( D ` f ) ) |
102 |
100 101
|
eqbrtrd |
|- ( ( R e. IDomn /\ ( f e. B /\ ( D ` f ) = 0 ) ) -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) |
103 |
102
|
expr |
|- ( ( R e. IDomn /\ f e. B ) -> ( ( D ` f ) = 0 -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) |
104 |
103
|
ralrimiva |
|- ( R e. IDomn -> A. f e. B ( ( D ` f ) = 0 -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) |
105 |
|
fveqeq2 |
|- ( f = g -> ( ( D ` f ) = d <-> ( D ` g ) = d ) ) |
106 |
|
fveq2 |
|- ( f = g -> ( O ` f ) = ( O ` g ) ) |
107 |
106
|
cnveqd |
|- ( f = g -> `' ( O ` f ) = `' ( O ` g ) ) |
108 |
107
|
imaeq1d |
|- ( f = g -> ( `' ( O ` f ) " { W } ) = ( `' ( O ` g ) " { W } ) ) |
109 |
108
|
fveq2d |
|- ( f = g -> ( # ` ( `' ( O ` f ) " { W } ) ) = ( # ` ( `' ( O ` g ) " { W } ) ) ) |
110 |
|
fveq2 |
|- ( f = g -> ( D ` f ) = ( D ` g ) ) |
111 |
109 110
|
breq12d |
|- ( f = g -> ( ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) <-> ( # ` ( `' ( O ` g ) " { W } ) ) <_ ( D ` g ) ) ) |
112 |
105 111
|
imbi12d |
|- ( f = g -> ( ( ( D ` f ) = d -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) <-> ( ( D ` g ) = d -> ( # ` ( `' ( O ` g ) " { W } ) ) <_ ( D ` g ) ) ) ) |
113 |
112
|
cbvralvw |
|- ( A. f e. B ( ( D ` f ) = d -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) <-> A. g e. B ( ( D ` g ) = d -> ( # ` ( `' ( O ` g ) " { W } ) ) <_ ( D ` g ) ) ) |
114 |
|
simprr |
|- ( ( ( R e. IDomn /\ d e. NN0 ) /\ ( f e. B /\ ( D ` f ) = ( d + 1 ) ) ) -> ( D ` f ) = ( d + 1 ) ) |
115 |
|
peano2nn0 |
|- ( d e. NN0 -> ( d + 1 ) e. NN0 ) |
116 |
115
|
ad2antlr |
|- ( ( ( R e. IDomn /\ d e. NN0 ) /\ ( f e. B /\ ( D ` f ) = ( d + 1 ) ) ) -> ( d + 1 ) e. NN0 ) |
117 |
114 116
|
eqeltrd |
|- ( ( ( R e. IDomn /\ d e. NN0 ) /\ ( f e. B /\ ( D ` f ) = ( d + 1 ) ) ) -> ( D ` f ) e. NN0 ) |
118 |
117
|
nn0ge0d |
|- ( ( ( R e. IDomn /\ d e. NN0 ) /\ ( f e. B /\ ( D ` f ) = ( d + 1 ) ) ) -> 0 <_ ( D ` f ) ) |
119 |
|
fveq2 |
|- ( ( `' ( O ` f ) " { W } ) = (/) -> ( # ` ( `' ( O ` f ) " { W } ) ) = ( # ` (/) ) ) |
120 |
119 99
|
eqtrdi |
|- ( ( `' ( O ` f ) " { W } ) = (/) -> ( # ` ( `' ( O ` f ) " { W } ) ) = 0 ) |
121 |
120
|
breq1d |
|- ( ( `' ( O ` f ) " { W } ) = (/) -> ( ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) <-> 0 <_ ( D ` f ) ) ) |
122 |
118 121
|
syl5ibrcom |
|- ( ( ( R e. IDomn /\ d e. NN0 ) /\ ( f e. B /\ ( D ` f ) = ( d + 1 ) ) ) -> ( ( `' ( O ` f ) " { W } ) = (/) -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) |
123 |
122
|
a1dd |
|- ( ( ( R e. IDomn /\ d e. NN0 ) /\ ( f e. B /\ ( D ` f ) = ( d + 1 ) ) ) -> ( ( `' ( O ` f ) " { W } ) = (/) -> ( A. g e. B ( ( D ` g ) = d -> ( # ` ( `' ( O ` g ) " { W } ) ) <_ ( D ` g ) ) -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) ) |
124 |
|
n0 |
|- ( ( `' ( O ` f ) " { W } ) =/= (/) <-> E. x x e. ( `' ( O ` f ) " { W } ) ) |
125 |
|
simplll |
|- ( ( ( ( R e. IDomn /\ d e. NN0 ) /\ ( f e. B /\ ( D ` f ) = ( d + 1 ) ) ) /\ ( x e. ( `' ( O ` f ) " { W } ) /\ A. g e. B ( ( D ` g ) = d -> ( # ` ( `' ( O ` g ) " { W } ) ) <_ ( D ` g ) ) ) ) -> R e. IDomn ) |
126 |
|
simplrl |
|- ( ( ( ( R e. IDomn /\ d e. NN0 ) /\ ( f e. B /\ ( D ` f ) = ( d + 1 ) ) ) /\ ( x e. ( `' ( O ` f ) " { W } ) /\ A. g e. B ( ( D ` g ) = d -> ( # ` ( `' ( O ` g ) " { W } ) ) <_ ( D ` g ) ) ) ) -> f e. B ) |
127 |
|
eqid |
|- ( var1 ` R ) = ( var1 ` R ) |
128 |
|
eqid |
|- ( -g ` P ) = ( -g ` P ) |
129 |
|
eqid |
|- ( ( var1 ` R ) ( -g ` P ) ( ( algSc ` P ) ` x ) ) = ( ( var1 ` R ) ( -g ` P ) ( ( algSc ` P ) ` x ) ) |
130 |
|
simpllr |
|- ( ( ( ( R e. IDomn /\ d e. NN0 ) /\ ( f e. B /\ ( D ` f ) = ( d + 1 ) ) ) /\ ( x e. ( `' ( O ` f ) " { W } ) /\ A. g e. B ( ( D ` g ) = d -> ( # ` ( `' ( O ` g ) " { W } ) ) <_ ( D ` g ) ) ) ) -> d e. NN0 ) |
131 |
|
simplrr |
|- ( ( ( ( R e. IDomn /\ d e. NN0 ) /\ ( f e. B /\ ( D ` f ) = ( d + 1 ) ) ) /\ ( x e. ( `' ( O ` f ) " { W } ) /\ A. g e. B ( ( D ` g ) = d -> ( # ` ( `' ( O ` g ) " { W } ) ) <_ ( D ` g ) ) ) ) -> ( D ` f ) = ( d + 1 ) ) |
132 |
|
simprl |
|- ( ( ( ( R e. IDomn /\ d e. NN0 ) /\ ( f e. B /\ ( D ` f ) = ( d + 1 ) ) ) /\ ( x e. ( `' ( O ` f ) " { W } ) /\ A. g e. B ( ( D ` g ) = d -> ( # ` ( `' ( O ` g ) " { W } ) ) <_ ( D ` g ) ) ) ) -> x e. ( `' ( O ` f ) " { W } ) ) |
133 |
|
simprr |
|- ( ( ( ( R e. IDomn /\ d e. NN0 ) /\ ( f e. B /\ ( D ` f ) = ( d + 1 ) ) ) /\ ( x e. ( `' ( O ` f ) " { W } ) /\ A. g e. B ( ( D ` g ) = d -> ( # ` ( `' ( O ` g ) " { W } ) ) <_ ( D ` g ) ) ) ) -> A. g e. B ( ( D ` g ) = d -> ( # ` ( `' ( O ` g ) " { W } ) ) <_ ( D ` g ) ) ) |
134 |
1 2 3 4 5 6 125 126 62 127 128 54 129 130 131 132 133
|
fta1glem2 |
|- ( ( ( ( R e. IDomn /\ d e. NN0 ) /\ ( f e. B /\ ( D ` f ) = ( d + 1 ) ) ) /\ ( x e. ( `' ( O ` f ) " { W } ) /\ A. g e. B ( ( D ` g ) = d -> ( # ` ( `' ( O ` g ) " { W } ) ) <_ ( D ` g ) ) ) ) -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) |
135 |
134
|
exp32 |
|- ( ( ( R e. IDomn /\ d e. NN0 ) /\ ( f e. B /\ ( D ` f ) = ( d + 1 ) ) ) -> ( x e. ( `' ( O ` f ) " { W } ) -> ( A. g e. B ( ( D ` g ) = d -> ( # ` ( `' ( O ` g ) " { W } ) ) <_ ( D ` g ) ) -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) ) |
136 |
135
|
exlimdv |
|- ( ( ( R e. IDomn /\ d e. NN0 ) /\ ( f e. B /\ ( D ` f ) = ( d + 1 ) ) ) -> ( E. x x e. ( `' ( O ` f ) " { W } ) -> ( A. g e. B ( ( D ` g ) = d -> ( # ` ( `' ( O ` g ) " { W } ) ) <_ ( D ` g ) ) -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) ) |
137 |
124 136
|
syl5bi |
|- ( ( ( R e. IDomn /\ d e. NN0 ) /\ ( f e. B /\ ( D ` f ) = ( d + 1 ) ) ) -> ( ( `' ( O ` f ) " { W } ) =/= (/) -> ( A. g e. B ( ( D ` g ) = d -> ( # ` ( `' ( O ` g ) " { W } ) ) <_ ( D ` g ) ) -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) ) |
138 |
123 137
|
pm2.61dne |
|- ( ( ( R e. IDomn /\ d e. NN0 ) /\ ( f e. B /\ ( D ` f ) = ( d + 1 ) ) ) -> ( A. g e. B ( ( D ` g ) = d -> ( # ` ( `' ( O ` g ) " { W } ) ) <_ ( D ` g ) ) -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) |
139 |
138
|
expr |
|- ( ( ( R e. IDomn /\ d e. NN0 ) /\ f e. B ) -> ( ( D ` f ) = ( d + 1 ) -> ( A. g e. B ( ( D ` g ) = d -> ( # ` ( `' ( O ` g ) " { W } ) ) <_ ( D ` g ) ) -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) ) |
140 |
139
|
com23 |
|- ( ( ( R e. IDomn /\ d e. NN0 ) /\ f e. B ) -> ( A. g e. B ( ( D ` g ) = d -> ( # ` ( `' ( O ` g ) " { W } ) ) <_ ( D ` g ) ) -> ( ( D ` f ) = ( d + 1 ) -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) ) |
141 |
140
|
ralrimdva |
|- ( ( R e. IDomn /\ d e. NN0 ) -> ( A. g e. B ( ( D ` g ) = d -> ( # ` ( `' ( O ` g ) " { W } ) ) <_ ( D ` g ) ) -> A. f e. B ( ( D ` f ) = ( d + 1 ) -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) ) |
142 |
113 141
|
syl5bi |
|- ( ( R e. IDomn /\ d e. NN0 ) -> ( A. f e. B ( ( D ` f ) = d -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) -> A. f e. B ( ( D ` f ) = ( d + 1 ) -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) ) |
143 |
142
|
expcom |
|- ( d e. NN0 -> ( R e. IDomn -> ( A. f e. B ( ( D ` f ) = d -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) -> A. f e. B ( ( D ` f ) = ( d + 1 ) -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) ) ) |
144 |
143
|
a2d |
|- ( d e. NN0 -> ( ( R e. IDomn -> A. f e. B ( ( D ` f ) = d -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) -> ( R e. IDomn -> A. f e. B ( ( D ` f ) = ( d + 1 ) -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) ) ) |
145 |
28 32 36 40 104 144
|
nn0ind |
|- ( ( D ` F ) e. NN0 -> ( R e. IDomn -> A. f e. B ( ( D ` f ) = ( D ` F ) -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) ) |
146 |
24 7 145
|
sylc |
|- ( ph -> A. f e. B ( ( D ` f ) = ( D ` F ) -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) |
147 |
18 146 8
|
rspcdva |
|- ( ph -> ( ( D ` F ) = ( D ` F ) -> ( # ` ( `' ( O ` F ) " { W } ) ) <_ ( D ` F ) ) ) |
148 |
10 147
|
mpi |
|- ( ph -> ( # ` ( `' ( O ` F ) " { W } ) ) <_ ( D ` F ) ) |