Step |
Hyp |
Ref |
Expression |
1 |
|
fta1g.p |
|- P = ( Poly1 ` R ) |
2 |
|
fta1g.b |
|- B = ( Base ` P ) |
3 |
|
fta1g.d |
|- D = ( deg1 ` R ) |
4 |
|
fta1g.o |
|- O = ( eval1 ` R ) |
5 |
|
fta1g.w |
|- W = ( 0g ` R ) |
6 |
|
fta1g.z |
|- .0. = ( 0g ` P ) |
7 |
|
fta1g.1 |
|- ( ph -> R e. IDomn ) |
8 |
|
fta1g.2 |
|- ( ph -> F e. B ) |
9 |
|
fta1glem.k |
|- K = ( Base ` R ) |
10 |
|
fta1glem.x |
|- X = ( var1 ` R ) |
11 |
|
fta1glem.m |
|- .- = ( -g ` P ) |
12 |
|
fta1glem.a |
|- A = ( algSc ` P ) |
13 |
|
fta1glem.g |
|- G = ( X .- ( A ` T ) ) |
14 |
|
fta1glem.3 |
|- ( ph -> N e. NN0 ) |
15 |
|
fta1glem.4 |
|- ( ph -> ( D ` F ) = ( N + 1 ) ) |
16 |
|
fta1glem.5 |
|- ( ph -> T e. ( `' ( O ` F ) " { W } ) ) |
17 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
18 |
|
isidom |
|- ( R e. IDomn <-> ( R e. CRing /\ R e. Domn ) ) |
19 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
20 |
18 19
|
simplbiim |
|- ( R e. IDomn -> R e. NzRing ) |
21 |
7 20
|
syl |
|- ( ph -> R e. NzRing ) |
22 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
23 |
21 22
|
syl |
|- ( ph -> R e. Ring ) |
24 |
18
|
simplbi |
|- ( R e. IDomn -> R e. CRing ) |
25 |
7 24
|
syl |
|- ( ph -> R e. CRing ) |
26 |
|
eqid |
|- ( R ^s K ) = ( R ^s K ) |
27 |
|
eqid |
|- ( Base ` ( R ^s K ) ) = ( Base ` ( R ^s K ) ) |
28 |
9
|
fvexi |
|- K e. _V |
29 |
28
|
a1i |
|- ( ph -> K e. _V ) |
30 |
4 1 26 9
|
evl1rhm |
|- ( R e. CRing -> O e. ( P RingHom ( R ^s K ) ) ) |
31 |
25 30
|
syl |
|- ( ph -> O e. ( P RingHom ( R ^s K ) ) ) |
32 |
2 27
|
rhmf |
|- ( O e. ( P RingHom ( R ^s K ) ) -> O : B --> ( Base ` ( R ^s K ) ) ) |
33 |
31 32
|
syl |
|- ( ph -> O : B --> ( Base ` ( R ^s K ) ) ) |
34 |
33 8
|
ffvelrnd |
|- ( ph -> ( O ` F ) e. ( Base ` ( R ^s K ) ) ) |
35 |
26 9 27 7 29 34
|
pwselbas |
|- ( ph -> ( O ` F ) : K --> K ) |
36 |
35
|
ffnd |
|- ( ph -> ( O ` F ) Fn K ) |
37 |
|
fniniseg |
|- ( ( O ` F ) Fn K -> ( T e. ( `' ( O ` F ) " { W } ) <-> ( T e. K /\ ( ( O ` F ) ` T ) = W ) ) ) |
38 |
36 37
|
syl |
|- ( ph -> ( T e. ( `' ( O ` F ) " { W } ) <-> ( T e. K /\ ( ( O ` F ) ` T ) = W ) ) ) |
39 |
16 38
|
mpbid |
|- ( ph -> ( T e. K /\ ( ( O ` F ) ` T ) = W ) ) |
40 |
39
|
simpld |
|- ( ph -> T e. K ) |
41 |
|
eqid |
|- ( Monic1p ` R ) = ( Monic1p ` R ) |
42 |
1 2 9 10 11 12 13 4 21 25 40 41 3 5
|
ply1remlem |
|- ( ph -> ( G e. ( Monic1p ` R ) /\ ( D ` G ) = 1 /\ ( `' ( O ` G ) " { W } ) = { T } ) ) |
43 |
42
|
simp1d |
|- ( ph -> G e. ( Monic1p ` R ) ) |
44 |
|
eqid |
|- ( Unic1p ` R ) = ( Unic1p ` R ) |
45 |
44 41
|
mon1puc1p |
|- ( ( R e. Ring /\ G e. ( Monic1p ` R ) ) -> G e. ( Unic1p ` R ) ) |
46 |
23 43 45
|
syl2anc |
|- ( ph -> G e. ( Unic1p ` R ) ) |
47 |
|
eqid |
|- ( quot1p ` R ) = ( quot1p ` R ) |
48 |
47 1 2 44
|
q1pcl |
|- ( ( R e. Ring /\ F e. B /\ G e. ( Unic1p ` R ) ) -> ( F ( quot1p ` R ) G ) e. B ) |
49 |
23 8 46 48
|
syl3anc |
|- ( ph -> ( F ( quot1p ` R ) G ) e. B ) |
50 |
|
peano2nn0 |
|- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
51 |
14 50
|
syl |
|- ( ph -> ( N + 1 ) e. NN0 ) |
52 |
15 51
|
eqeltrd |
|- ( ph -> ( D ` F ) e. NN0 ) |
53 |
3 1 6 2
|
deg1nn0clb |
|- ( ( R e. Ring /\ F e. B ) -> ( F =/= .0. <-> ( D ` F ) e. NN0 ) ) |
54 |
23 8 53
|
syl2anc |
|- ( ph -> ( F =/= .0. <-> ( D ` F ) e. NN0 ) ) |
55 |
52 54
|
mpbird |
|- ( ph -> F =/= .0. ) |
56 |
39
|
simprd |
|- ( ph -> ( ( O ` F ) ` T ) = W ) |
57 |
|
eqid |
|- ( ||r ` P ) = ( ||r ` P ) |
58 |
1 2 9 10 11 12 13 4 21 25 40 8 5 57
|
facth1 |
|- ( ph -> ( G ( ||r ` P ) F <-> ( ( O ` F ) ` T ) = W ) ) |
59 |
56 58
|
mpbird |
|- ( ph -> G ( ||r ` P ) F ) |
60 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
61 |
1 57 2 44 60 47
|
dvdsq1p |
|- ( ( R e. Ring /\ F e. B /\ G e. ( Unic1p ` R ) ) -> ( G ( ||r ` P ) F <-> F = ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) ) |
62 |
23 8 46 61
|
syl3anc |
|- ( ph -> ( G ( ||r ` P ) F <-> F = ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) ) |
63 |
59 62
|
mpbid |
|- ( ph -> F = ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) |
64 |
63
|
eqcomd |
|- ( ph -> ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) = F ) |
65 |
1
|
ply1crng |
|- ( R e. CRing -> P e. CRing ) |
66 |
25 65
|
syl |
|- ( ph -> P e. CRing ) |
67 |
|
crngring |
|- ( P e. CRing -> P e. Ring ) |
68 |
66 67
|
syl |
|- ( ph -> P e. Ring ) |
69 |
1 2 41
|
mon1pcl |
|- ( G e. ( Monic1p ` R ) -> G e. B ) |
70 |
43 69
|
syl |
|- ( ph -> G e. B ) |
71 |
2 60 6
|
ringlz |
|- ( ( P e. Ring /\ G e. B ) -> ( .0. ( .r ` P ) G ) = .0. ) |
72 |
68 70 71
|
syl2anc |
|- ( ph -> ( .0. ( .r ` P ) G ) = .0. ) |
73 |
55 64 72
|
3netr4d |
|- ( ph -> ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) =/= ( .0. ( .r ` P ) G ) ) |
74 |
|
oveq1 |
|- ( ( F ( quot1p ` R ) G ) = .0. -> ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) = ( .0. ( .r ` P ) G ) ) |
75 |
74
|
necon3i |
|- ( ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) =/= ( .0. ( .r ` P ) G ) -> ( F ( quot1p ` R ) G ) =/= .0. ) |
76 |
73 75
|
syl |
|- ( ph -> ( F ( quot1p ` R ) G ) =/= .0. ) |
77 |
3 1 6 2
|
deg1nn0cl |
|- ( ( R e. Ring /\ ( F ( quot1p ` R ) G ) e. B /\ ( F ( quot1p ` R ) G ) =/= .0. ) -> ( D ` ( F ( quot1p ` R ) G ) ) e. NN0 ) |
78 |
23 49 76 77
|
syl3anc |
|- ( ph -> ( D ` ( F ( quot1p ` R ) G ) ) e. NN0 ) |
79 |
78
|
nn0cnd |
|- ( ph -> ( D ` ( F ( quot1p ` R ) G ) ) e. CC ) |
80 |
14
|
nn0cnd |
|- ( ph -> N e. CC ) |
81 |
2 60
|
crngcom |
|- ( ( P e. CRing /\ ( F ( quot1p ` R ) G ) e. B /\ G e. B ) -> ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) = ( G ( .r ` P ) ( F ( quot1p ` R ) G ) ) ) |
82 |
66 49 70 81
|
syl3anc |
|- ( ph -> ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) = ( G ( .r ` P ) ( F ( quot1p ` R ) G ) ) ) |
83 |
63 82
|
eqtrd |
|- ( ph -> F = ( G ( .r ` P ) ( F ( quot1p ` R ) G ) ) ) |
84 |
83
|
fveq2d |
|- ( ph -> ( D ` F ) = ( D ` ( G ( .r ` P ) ( F ( quot1p ` R ) G ) ) ) ) |
85 |
|
eqid |
|- ( RLReg ` R ) = ( RLReg ` R ) |
86 |
42
|
simp2d |
|- ( ph -> ( D ` G ) = 1 ) |
87 |
|
1nn0 |
|- 1 e. NN0 |
88 |
86 87
|
eqeltrdi |
|- ( ph -> ( D ` G ) e. NN0 ) |
89 |
3 1 6 2
|
deg1nn0clb |
|- ( ( R e. Ring /\ G e. B ) -> ( G =/= .0. <-> ( D ` G ) e. NN0 ) ) |
90 |
23 70 89
|
syl2anc |
|- ( ph -> ( G =/= .0. <-> ( D ` G ) e. NN0 ) ) |
91 |
88 90
|
mpbird |
|- ( ph -> G =/= .0. ) |
92 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
93 |
85 92
|
unitrrg |
|- ( R e. Ring -> ( Unit ` R ) C_ ( RLReg ` R ) ) |
94 |
23 93
|
syl |
|- ( ph -> ( Unit ` R ) C_ ( RLReg ` R ) ) |
95 |
3 92 44
|
uc1pldg |
|- ( G e. ( Unic1p ` R ) -> ( ( coe1 ` G ) ` ( D ` G ) ) e. ( Unit ` R ) ) |
96 |
46 95
|
syl |
|- ( ph -> ( ( coe1 ` G ) ` ( D ` G ) ) e. ( Unit ` R ) ) |
97 |
94 96
|
sseldd |
|- ( ph -> ( ( coe1 ` G ) ` ( D ` G ) ) e. ( RLReg ` R ) ) |
98 |
3 1 85 2 60 6 23 70 91 97 49 76
|
deg1mul2 |
|- ( ph -> ( D ` ( G ( .r ` P ) ( F ( quot1p ` R ) G ) ) ) = ( ( D ` G ) + ( D ` ( F ( quot1p ` R ) G ) ) ) ) |
99 |
84 15 98
|
3eqtr3d |
|- ( ph -> ( N + 1 ) = ( ( D ` G ) + ( D ` ( F ( quot1p ` R ) G ) ) ) ) |
100 |
|
ax-1cn |
|- 1 e. CC |
101 |
|
addcom |
|- ( ( N e. CC /\ 1 e. CC ) -> ( N + 1 ) = ( 1 + N ) ) |
102 |
80 100 101
|
sylancl |
|- ( ph -> ( N + 1 ) = ( 1 + N ) ) |
103 |
86
|
oveq1d |
|- ( ph -> ( ( D ` G ) + ( D ` ( F ( quot1p ` R ) G ) ) ) = ( 1 + ( D ` ( F ( quot1p ` R ) G ) ) ) ) |
104 |
99 102 103
|
3eqtr3rd |
|- ( ph -> ( 1 + ( D ` ( F ( quot1p ` R ) G ) ) ) = ( 1 + N ) ) |
105 |
17 79 80 104
|
addcanad |
|- ( ph -> ( D ` ( F ( quot1p ` R ) G ) ) = N ) |