Step |
Hyp |
Ref |
Expression |
1 |
|
fta1g.p |
|- P = ( Poly1 ` R ) |
2 |
|
fta1g.b |
|- B = ( Base ` P ) |
3 |
|
fta1g.d |
|- D = ( deg1 ` R ) |
4 |
|
fta1g.o |
|- O = ( eval1 ` R ) |
5 |
|
fta1g.w |
|- W = ( 0g ` R ) |
6 |
|
fta1g.z |
|- .0. = ( 0g ` P ) |
7 |
|
fta1g.1 |
|- ( ph -> R e. IDomn ) |
8 |
|
fta1g.2 |
|- ( ph -> F e. B ) |
9 |
|
fta1glem.k |
|- K = ( Base ` R ) |
10 |
|
fta1glem.x |
|- X = ( var1 ` R ) |
11 |
|
fta1glem.m |
|- .- = ( -g ` P ) |
12 |
|
fta1glem.a |
|- A = ( algSc ` P ) |
13 |
|
fta1glem.g |
|- G = ( X .- ( A ` T ) ) |
14 |
|
fta1glem.3 |
|- ( ph -> N e. NN0 ) |
15 |
|
fta1glem.4 |
|- ( ph -> ( D ` F ) = ( N + 1 ) ) |
16 |
|
fta1glem.5 |
|- ( ph -> T e. ( `' ( O ` F ) " { W } ) ) |
17 |
|
fta1glem.6 |
|- ( ph -> A. g e. B ( ( D ` g ) = N -> ( # ` ( `' ( O ` g ) " { W } ) ) <_ ( D ` g ) ) ) |
18 |
|
eqid |
|- ( R ^s K ) = ( R ^s K ) |
19 |
|
eqid |
|- ( Base ` ( R ^s K ) ) = ( Base ` ( R ^s K ) ) |
20 |
9
|
fvexi |
|- K e. _V |
21 |
20
|
a1i |
|- ( ph -> K e. _V ) |
22 |
|
isidom |
|- ( R e. IDomn <-> ( R e. CRing /\ R e. Domn ) ) |
23 |
22
|
simplbi |
|- ( R e. IDomn -> R e. CRing ) |
24 |
7 23
|
syl |
|- ( ph -> R e. CRing ) |
25 |
4 1 18 9
|
evl1rhm |
|- ( R e. CRing -> O e. ( P RingHom ( R ^s K ) ) ) |
26 |
24 25
|
syl |
|- ( ph -> O e. ( P RingHom ( R ^s K ) ) ) |
27 |
2 19
|
rhmf |
|- ( O e. ( P RingHom ( R ^s K ) ) -> O : B --> ( Base ` ( R ^s K ) ) ) |
28 |
26 27
|
syl |
|- ( ph -> O : B --> ( Base ` ( R ^s K ) ) ) |
29 |
28 8
|
ffvelrnd |
|- ( ph -> ( O ` F ) e. ( Base ` ( R ^s K ) ) ) |
30 |
18 9 19 7 21 29
|
pwselbas |
|- ( ph -> ( O ` F ) : K --> K ) |
31 |
30
|
ffnd |
|- ( ph -> ( O ` F ) Fn K ) |
32 |
|
fniniseg |
|- ( ( O ` F ) Fn K -> ( T e. ( `' ( O ` F ) " { W } ) <-> ( T e. K /\ ( ( O ` F ) ` T ) = W ) ) ) |
33 |
31 32
|
syl |
|- ( ph -> ( T e. ( `' ( O ` F ) " { W } ) <-> ( T e. K /\ ( ( O ` F ) ` T ) = W ) ) ) |
34 |
16 33
|
mpbid |
|- ( ph -> ( T e. K /\ ( ( O ` F ) ` T ) = W ) ) |
35 |
34
|
simprd |
|- ( ph -> ( ( O ` F ) ` T ) = W ) |
36 |
22
|
simprbi |
|- ( R e. IDomn -> R e. Domn ) |
37 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
38 |
36 37
|
syl |
|- ( R e. IDomn -> R e. NzRing ) |
39 |
7 38
|
syl |
|- ( ph -> R e. NzRing ) |
40 |
34
|
simpld |
|- ( ph -> T e. K ) |
41 |
|
eqid |
|- ( ||r ` P ) = ( ||r ` P ) |
42 |
1 2 9 10 11 12 13 4 39 24 40 8 5 41
|
facth1 |
|- ( ph -> ( G ( ||r ` P ) F <-> ( ( O ` F ) ` T ) = W ) ) |
43 |
35 42
|
mpbird |
|- ( ph -> G ( ||r ` P ) F ) |
44 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
45 |
39 44
|
syl |
|- ( ph -> R e. Ring ) |
46 |
|
eqid |
|- ( Monic1p ` R ) = ( Monic1p ` R ) |
47 |
1 2 9 10 11 12 13 4 39 24 40 46 3 5
|
ply1remlem |
|- ( ph -> ( G e. ( Monic1p ` R ) /\ ( D ` G ) = 1 /\ ( `' ( O ` G ) " { W } ) = { T } ) ) |
48 |
47
|
simp1d |
|- ( ph -> G e. ( Monic1p ` R ) ) |
49 |
|
eqid |
|- ( Unic1p ` R ) = ( Unic1p ` R ) |
50 |
49 46
|
mon1puc1p |
|- ( ( R e. Ring /\ G e. ( Monic1p ` R ) ) -> G e. ( Unic1p ` R ) ) |
51 |
45 48 50
|
syl2anc |
|- ( ph -> G e. ( Unic1p ` R ) ) |
52 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
53 |
|
eqid |
|- ( quot1p ` R ) = ( quot1p ` R ) |
54 |
1 41 2 49 52 53
|
dvdsq1p |
|- ( ( R e. Ring /\ F e. B /\ G e. ( Unic1p ` R ) ) -> ( G ( ||r ` P ) F <-> F = ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) ) |
55 |
45 8 51 54
|
syl3anc |
|- ( ph -> ( G ( ||r ` P ) F <-> F = ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) ) |
56 |
43 55
|
mpbid |
|- ( ph -> F = ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) |
57 |
56
|
fveq2d |
|- ( ph -> ( O ` F ) = ( O ` ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) ) |
58 |
53 1 2 49
|
q1pcl |
|- ( ( R e. Ring /\ F e. B /\ G e. ( Unic1p ` R ) ) -> ( F ( quot1p ` R ) G ) e. B ) |
59 |
45 8 51 58
|
syl3anc |
|- ( ph -> ( F ( quot1p ` R ) G ) e. B ) |
60 |
1 2 46
|
mon1pcl |
|- ( G e. ( Monic1p ` R ) -> G e. B ) |
61 |
48 60
|
syl |
|- ( ph -> G e. B ) |
62 |
|
eqid |
|- ( .r ` ( R ^s K ) ) = ( .r ` ( R ^s K ) ) |
63 |
2 52 62
|
rhmmul |
|- ( ( O e. ( P RingHom ( R ^s K ) ) /\ ( F ( quot1p ` R ) G ) e. B /\ G e. B ) -> ( O ` ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) = ( ( O ` ( F ( quot1p ` R ) G ) ) ( .r ` ( R ^s K ) ) ( O ` G ) ) ) |
64 |
26 59 61 63
|
syl3anc |
|- ( ph -> ( O ` ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) = ( ( O ` ( F ( quot1p ` R ) G ) ) ( .r ` ( R ^s K ) ) ( O ` G ) ) ) |
65 |
28 59
|
ffvelrnd |
|- ( ph -> ( O ` ( F ( quot1p ` R ) G ) ) e. ( Base ` ( R ^s K ) ) ) |
66 |
28 61
|
ffvelrnd |
|- ( ph -> ( O ` G ) e. ( Base ` ( R ^s K ) ) ) |
67 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
68 |
18 19 7 21 65 66 67 62
|
pwsmulrval |
|- ( ph -> ( ( O ` ( F ( quot1p ` R ) G ) ) ( .r ` ( R ^s K ) ) ( O ` G ) ) = ( ( O ` ( F ( quot1p ` R ) G ) ) oF ( .r ` R ) ( O ` G ) ) ) |
69 |
57 64 68
|
3eqtrd |
|- ( ph -> ( O ` F ) = ( ( O ` ( F ( quot1p ` R ) G ) ) oF ( .r ` R ) ( O ` G ) ) ) |
70 |
69
|
fveq1d |
|- ( ph -> ( ( O ` F ) ` x ) = ( ( ( O ` ( F ( quot1p ` R ) G ) ) oF ( .r ` R ) ( O ` G ) ) ` x ) ) |
71 |
70
|
adantr |
|- ( ( ph /\ x e. K ) -> ( ( O ` F ) ` x ) = ( ( ( O ` ( F ( quot1p ` R ) G ) ) oF ( .r ` R ) ( O ` G ) ) ` x ) ) |
72 |
18 9 19 7 21 65
|
pwselbas |
|- ( ph -> ( O ` ( F ( quot1p ` R ) G ) ) : K --> K ) |
73 |
72
|
ffnd |
|- ( ph -> ( O ` ( F ( quot1p ` R ) G ) ) Fn K ) |
74 |
73
|
adantr |
|- ( ( ph /\ x e. K ) -> ( O ` ( F ( quot1p ` R ) G ) ) Fn K ) |
75 |
18 9 19 7 21 66
|
pwselbas |
|- ( ph -> ( O ` G ) : K --> K ) |
76 |
75
|
ffnd |
|- ( ph -> ( O ` G ) Fn K ) |
77 |
76
|
adantr |
|- ( ( ph /\ x e. K ) -> ( O ` G ) Fn K ) |
78 |
20
|
a1i |
|- ( ( ph /\ x e. K ) -> K e. _V ) |
79 |
|
simpr |
|- ( ( ph /\ x e. K ) -> x e. K ) |
80 |
|
fnfvof |
|- ( ( ( ( O ` ( F ( quot1p ` R ) G ) ) Fn K /\ ( O ` G ) Fn K ) /\ ( K e. _V /\ x e. K ) ) -> ( ( ( O ` ( F ( quot1p ` R ) G ) ) oF ( .r ` R ) ( O ` G ) ) ` x ) = ( ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) ( .r ` R ) ( ( O ` G ) ` x ) ) ) |
81 |
74 77 78 79 80
|
syl22anc |
|- ( ( ph /\ x e. K ) -> ( ( ( O ` ( F ( quot1p ` R ) G ) ) oF ( .r ` R ) ( O ` G ) ) ` x ) = ( ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) ( .r ` R ) ( ( O ` G ) ` x ) ) ) |
82 |
71 81
|
eqtrd |
|- ( ( ph /\ x e. K ) -> ( ( O ` F ) ` x ) = ( ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) ( .r ` R ) ( ( O ` G ) ` x ) ) ) |
83 |
82
|
eqeq1d |
|- ( ( ph /\ x e. K ) -> ( ( ( O ` F ) ` x ) = W <-> ( ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) ( .r ` R ) ( ( O ` G ) ` x ) ) = W ) ) |
84 |
7 36
|
syl |
|- ( ph -> R e. Domn ) |
85 |
84
|
adantr |
|- ( ( ph /\ x e. K ) -> R e. Domn ) |
86 |
72
|
ffvelrnda |
|- ( ( ph /\ x e. K ) -> ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) e. K ) |
87 |
75
|
ffvelrnda |
|- ( ( ph /\ x e. K ) -> ( ( O ` G ) ` x ) e. K ) |
88 |
9 67 5
|
domneq0 |
|- ( ( R e. Domn /\ ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) e. K /\ ( ( O ` G ) ` x ) e. K ) -> ( ( ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) ( .r ` R ) ( ( O ` G ) ` x ) ) = W <-> ( ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) = W \/ ( ( O ` G ) ` x ) = W ) ) ) |
89 |
85 86 87 88
|
syl3anc |
|- ( ( ph /\ x e. K ) -> ( ( ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) ( .r ` R ) ( ( O ` G ) ` x ) ) = W <-> ( ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) = W \/ ( ( O ` G ) ` x ) = W ) ) ) |
90 |
83 89
|
bitrd |
|- ( ( ph /\ x e. K ) -> ( ( ( O ` F ) ` x ) = W <-> ( ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) = W \/ ( ( O ` G ) ` x ) = W ) ) ) |
91 |
90
|
pm5.32da |
|- ( ph -> ( ( x e. K /\ ( ( O ` F ) ` x ) = W ) <-> ( x e. K /\ ( ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) = W \/ ( ( O ` G ) ` x ) = W ) ) ) ) |
92 |
|
andi |
|- ( ( x e. K /\ ( ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) = W \/ ( ( O ` G ) ` x ) = W ) ) <-> ( ( x e. K /\ ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) = W ) \/ ( x e. K /\ ( ( O ` G ) ` x ) = W ) ) ) |
93 |
91 92
|
bitrdi |
|- ( ph -> ( ( x e. K /\ ( ( O ` F ) ` x ) = W ) <-> ( ( x e. K /\ ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) = W ) \/ ( x e. K /\ ( ( O ` G ) ` x ) = W ) ) ) ) |
94 |
|
fniniseg |
|- ( ( O ` F ) Fn K -> ( x e. ( `' ( O ` F ) " { W } ) <-> ( x e. K /\ ( ( O ` F ) ` x ) = W ) ) ) |
95 |
31 94
|
syl |
|- ( ph -> ( x e. ( `' ( O ` F ) " { W } ) <-> ( x e. K /\ ( ( O ` F ) ` x ) = W ) ) ) |
96 |
|
elun |
|- ( x e. ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) <-> ( x e. ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) \/ x e. { T } ) ) |
97 |
|
fniniseg |
|- ( ( O ` ( F ( quot1p ` R ) G ) ) Fn K -> ( x e. ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) <-> ( x e. K /\ ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) = W ) ) ) |
98 |
73 97
|
syl |
|- ( ph -> ( x e. ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) <-> ( x e. K /\ ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) = W ) ) ) |
99 |
47
|
simp3d |
|- ( ph -> ( `' ( O ` G ) " { W } ) = { T } ) |
100 |
99
|
eleq2d |
|- ( ph -> ( x e. ( `' ( O ` G ) " { W } ) <-> x e. { T } ) ) |
101 |
|
fniniseg |
|- ( ( O ` G ) Fn K -> ( x e. ( `' ( O ` G ) " { W } ) <-> ( x e. K /\ ( ( O ` G ) ` x ) = W ) ) ) |
102 |
76 101
|
syl |
|- ( ph -> ( x e. ( `' ( O ` G ) " { W } ) <-> ( x e. K /\ ( ( O ` G ) ` x ) = W ) ) ) |
103 |
100 102
|
bitr3d |
|- ( ph -> ( x e. { T } <-> ( x e. K /\ ( ( O ` G ) ` x ) = W ) ) ) |
104 |
98 103
|
orbi12d |
|- ( ph -> ( ( x e. ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) \/ x e. { T } ) <-> ( ( x e. K /\ ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) = W ) \/ ( x e. K /\ ( ( O ` G ) ` x ) = W ) ) ) ) |
105 |
96 104
|
syl5bb |
|- ( ph -> ( x e. ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) <-> ( ( x e. K /\ ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) = W ) \/ ( x e. K /\ ( ( O ` G ) ` x ) = W ) ) ) ) |
106 |
93 95 105
|
3bitr4d |
|- ( ph -> ( x e. ( `' ( O ` F ) " { W } ) <-> x e. ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) ) ) |
107 |
106
|
eqrdv |
|- ( ph -> ( `' ( O ` F ) " { W } ) = ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) ) |
108 |
107
|
fveq2d |
|- ( ph -> ( # ` ( `' ( O ` F ) " { W } ) ) = ( # ` ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) ) ) |
109 |
|
fvex |
|- ( O ` ( F ( quot1p ` R ) G ) ) e. _V |
110 |
109
|
cnvex |
|- `' ( O ` ( F ( quot1p ` R ) G ) ) e. _V |
111 |
110
|
imaex |
|- ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) e. _V |
112 |
111
|
a1i |
|- ( ph -> ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) e. _V ) |
113 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
fta1glem1 |
|- ( ph -> ( D ` ( F ( quot1p ` R ) G ) ) = N ) |
114 |
|
fveq2 |
|- ( g = ( F ( quot1p ` R ) G ) -> ( D ` g ) = ( D ` ( F ( quot1p ` R ) G ) ) ) |
115 |
114
|
eqeq1d |
|- ( g = ( F ( quot1p ` R ) G ) -> ( ( D ` g ) = N <-> ( D ` ( F ( quot1p ` R ) G ) ) = N ) ) |
116 |
|
fveq2 |
|- ( g = ( F ( quot1p ` R ) G ) -> ( O ` g ) = ( O ` ( F ( quot1p ` R ) G ) ) ) |
117 |
116
|
cnveqd |
|- ( g = ( F ( quot1p ` R ) G ) -> `' ( O ` g ) = `' ( O ` ( F ( quot1p ` R ) G ) ) ) |
118 |
117
|
imaeq1d |
|- ( g = ( F ( quot1p ` R ) G ) -> ( `' ( O ` g ) " { W } ) = ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) |
119 |
118
|
fveq2d |
|- ( g = ( F ( quot1p ` R ) G ) -> ( # ` ( `' ( O ` g ) " { W } ) ) = ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) ) |
120 |
119 114
|
breq12d |
|- ( g = ( F ( quot1p ` R ) G ) -> ( ( # ` ( `' ( O ` g ) " { W } ) ) <_ ( D ` g ) <-> ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) <_ ( D ` ( F ( quot1p ` R ) G ) ) ) ) |
121 |
115 120
|
imbi12d |
|- ( g = ( F ( quot1p ` R ) G ) -> ( ( ( D ` g ) = N -> ( # ` ( `' ( O ` g ) " { W } ) ) <_ ( D ` g ) ) <-> ( ( D ` ( F ( quot1p ` R ) G ) ) = N -> ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) <_ ( D ` ( F ( quot1p ` R ) G ) ) ) ) ) |
122 |
121 17 59
|
rspcdva |
|- ( ph -> ( ( D ` ( F ( quot1p ` R ) G ) ) = N -> ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) <_ ( D ` ( F ( quot1p ` R ) G ) ) ) ) |
123 |
113 122
|
mpd |
|- ( ph -> ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) <_ ( D ` ( F ( quot1p ` R ) G ) ) ) |
124 |
123 113
|
breqtrd |
|- ( ph -> ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) <_ N ) |
125 |
|
hashbnd |
|- ( ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) e. _V /\ N e. NN0 /\ ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) <_ N ) -> ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) e. Fin ) |
126 |
112 14 124 125
|
syl3anc |
|- ( ph -> ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) e. Fin ) |
127 |
|
snfi |
|- { T } e. Fin |
128 |
|
unfi |
|- ( ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) e. Fin /\ { T } e. Fin ) -> ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) e. Fin ) |
129 |
126 127 128
|
sylancl |
|- ( ph -> ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) e. Fin ) |
130 |
|
hashcl |
|- ( ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) e. Fin -> ( # ` ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) ) e. NN0 ) |
131 |
129 130
|
syl |
|- ( ph -> ( # ` ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) ) e. NN0 ) |
132 |
131
|
nn0red |
|- ( ph -> ( # ` ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) ) e. RR ) |
133 |
|
hashcl |
|- ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) e. Fin -> ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) e. NN0 ) |
134 |
126 133
|
syl |
|- ( ph -> ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) e. NN0 ) |
135 |
134
|
nn0red |
|- ( ph -> ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) e. RR ) |
136 |
|
peano2re |
|- ( ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) e. RR -> ( ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) + 1 ) e. RR ) |
137 |
135 136
|
syl |
|- ( ph -> ( ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) + 1 ) e. RR ) |
138 |
|
peano2nn0 |
|- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
139 |
14 138
|
syl |
|- ( ph -> ( N + 1 ) e. NN0 ) |
140 |
15 139
|
eqeltrd |
|- ( ph -> ( D ` F ) e. NN0 ) |
141 |
140
|
nn0red |
|- ( ph -> ( D ` F ) e. RR ) |
142 |
|
hashun2 |
|- ( ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) e. Fin /\ { T } e. Fin ) -> ( # ` ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) ) <_ ( ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) + ( # ` { T } ) ) ) |
143 |
126 127 142
|
sylancl |
|- ( ph -> ( # ` ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) ) <_ ( ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) + ( # ` { T } ) ) ) |
144 |
|
hashsng |
|- ( T e. ( `' ( O ` F ) " { W } ) -> ( # ` { T } ) = 1 ) |
145 |
16 144
|
syl |
|- ( ph -> ( # ` { T } ) = 1 ) |
146 |
145
|
oveq2d |
|- ( ph -> ( ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) + ( # ` { T } ) ) = ( ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) + 1 ) ) |
147 |
143 146
|
breqtrd |
|- ( ph -> ( # ` ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) ) <_ ( ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) + 1 ) ) |
148 |
14
|
nn0red |
|- ( ph -> N e. RR ) |
149 |
|
1red |
|- ( ph -> 1 e. RR ) |
150 |
135 148 149 124
|
leadd1dd |
|- ( ph -> ( ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) + 1 ) <_ ( N + 1 ) ) |
151 |
150 15
|
breqtrrd |
|- ( ph -> ( ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) + 1 ) <_ ( D ` F ) ) |
152 |
132 137 141 147 151
|
letrd |
|- ( ph -> ( # ` ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) ) <_ ( D ` F ) ) |
153 |
108 152
|
eqbrtrd |
|- ( ph -> ( # ` ( `' ( O ` F ) " { W } ) ) <_ ( D ` F ) ) |