| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fta1.1 |  |-  R = ( `' F " { 0 } ) | 
						
							| 2 |  | fta1.2 |  |-  ( ph -> D e. NN0 ) | 
						
							| 3 |  | fta1.3 |  |-  ( ph -> F e. ( ( Poly ` CC ) \ { 0p } ) ) | 
						
							| 4 |  | fta1.4 |  |-  ( ph -> ( deg ` F ) = ( D + 1 ) ) | 
						
							| 5 |  | fta1.5 |  |-  ( ph -> A e. ( `' F " { 0 } ) ) | 
						
							| 6 |  | fta1.6 |  |-  ( ph -> A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = D -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) | 
						
							| 7 |  | eldifsn |  |-  ( F e. ( ( Poly ` CC ) \ { 0p } ) <-> ( F e. ( Poly ` CC ) /\ F =/= 0p ) ) | 
						
							| 8 | 3 7 | sylib |  |-  ( ph -> ( F e. ( Poly ` CC ) /\ F =/= 0p ) ) | 
						
							| 9 | 8 | simpld |  |-  ( ph -> F e. ( Poly ` CC ) ) | 
						
							| 10 |  | plyf |  |-  ( F e. ( Poly ` CC ) -> F : CC --> CC ) | 
						
							| 11 |  | ffn |  |-  ( F : CC --> CC -> F Fn CC ) | 
						
							| 12 |  | fniniseg |  |-  ( F Fn CC -> ( A e. ( `' F " { 0 } ) <-> ( A e. CC /\ ( F ` A ) = 0 ) ) ) | 
						
							| 13 | 9 10 11 12 | 4syl |  |-  ( ph -> ( A e. ( `' F " { 0 } ) <-> ( A e. CC /\ ( F ` A ) = 0 ) ) ) | 
						
							| 14 | 5 13 | mpbid |  |-  ( ph -> ( A e. CC /\ ( F ` A ) = 0 ) ) | 
						
							| 15 | 14 | simpld |  |-  ( ph -> A e. CC ) | 
						
							| 16 | 14 | simprd |  |-  ( ph -> ( F ` A ) = 0 ) | 
						
							| 17 |  | eqid |  |-  ( Xp oF - ( CC X. { A } ) ) = ( Xp oF - ( CC X. { A } ) ) | 
						
							| 18 | 17 | facth |  |-  ( ( F e. ( Poly ` CC ) /\ A e. CC /\ ( F ` A ) = 0 ) -> F = ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) | 
						
							| 19 | 9 15 16 18 | syl3anc |  |-  ( ph -> F = ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) | 
						
							| 20 | 19 | cnveqd |  |-  ( ph -> `' F = `' ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) | 
						
							| 21 | 20 | imaeq1d |  |-  ( ph -> ( `' F " { 0 } ) = ( `' ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) " { 0 } ) ) | 
						
							| 22 |  | cnex |  |-  CC e. _V | 
						
							| 23 | 22 | a1i |  |-  ( ph -> CC e. _V ) | 
						
							| 24 |  | ssid |  |-  CC C_ CC | 
						
							| 25 |  | ax-1cn |  |-  1 e. CC | 
						
							| 26 |  | plyid |  |-  ( ( CC C_ CC /\ 1 e. CC ) -> Xp e. ( Poly ` CC ) ) | 
						
							| 27 | 24 25 26 | mp2an |  |-  Xp e. ( Poly ` CC ) | 
						
							| 28 |  | plyconst |  |-  ( ( CC C_ CC /\ A e. CC ) -> ( CC X. { A } ) e. ( Poly ` CC ) ) | 
						
							| 29 | 24 15 28 | sylancr |  |-  ( ph -> ( CC X. { A } ) e. ( Poly ` CC ) ) | 
						
							| 30 |  | plysubcl |  |-  ( ( Xp e. ( Poly ` CC ) /\ ( CC X. { A } ) e. ( Poly ` CC ) ) -> ( Xp oF - ( CC X. { A } ) ) e. ( Poly ` CC ) ) | 
						
							| 31 | 27 29 30 | sylancr |  |-  ( ph -> ( Xp oF - ( CC X. { A } ) ) e. ( Poly ` CC ) ) | 
						
							| 32 |  | plyf |  |-  ( ( Xp oF - ( CC X. { A } ) ) e. ( Poly ` CC ) -> ( Xp oF - ( CC X. { A } ) ) : CC --> CC ) | 
						
							| 33 | 31 32 | syl |  |-  ( ph -> ( Xp oF - ( CC X. { A } ) ) : CC --> CC ) | 
						
							| 34 | 17 | plyremlem |  |-  ( A e. CC -> ( ( Xp oF - ( CC X. { A } ) ) e. ( Poly ` CC ) /\ ( deg ` ( Xp oF - ( CC X. { A } ) ) ) = 1 /\ ( `' ( Xp oF - ( CC X. { A } ) ) " { 0 } ) = { A } ) ) | 
						
							| 35 | 15 34 | syl |  |-  ( ph -> ( ( Xp oF - ( CC X. { A } ) ) e. ( Poly ` CC ) /\ ( deg ` ( Xp oF - ( CC X. { A } ) ) ) = 1 /\ ( `' ( Xp oF - ( CC X. { A } ) ) " { 0 } ) = { A } ) ) | 
						
							| 36 | 35 | simp2d |  |-  ( ph -> ( deg ` ( Xp oF - ( CC X. { A } ) ) ) = 1 ) | 
						
							| 37 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 38 | 37 | a1i |  |-  ( ph -> 1 =/= 0 ) | 
						
							| 39 | 36 38 | eqnetrd |  |-  ( ph -> ( deg ` ( Xp oF - ( CC X. { A } ) ) ) =/= 0 ) | 
						
							| 40 |  | fveq2 |  |-  ( ( Xp oF - ( CC X. { A } ) ) = 0p -> ( deg ` ( Xp oF - ( CC X. { A } ) ) ) = ( deg ` 0p ) ) | 
						
							| 41 |  | dgr0 |  |-  ( deg ` 0p ) = 0 | 
						
							| 42 | 40 41 | eqtrdi |  |-  ( ( Xp oF - ( CC X. { A } ) ) = 0p -> ( deg ` ( Xp oF - ( CC X. { A } ) ) ) = 0 ) | 
						
							| 43 | 42 | necon3i |  |-  ( ( deg ` ( Xp oF - ( CC X. { A } ) ) ) =/= 0 -> ( Xp oF - ( CC X. { A } ) ) =/= 0p ) | 
						
							| 44 | 39 43 | syl |  |-  ( ph -> ( Xp oF - ( CC X. { A } ) ) =/= 0p ) | 
						
							| 45 |  | quotcl2 |  |-  ( ( F e. ( Poly ` CC ) /\ ( Xp oF - ( CC X. { A } ) ) e. ( Poly ` CC ) /\ ( Xp oF - ( CC X. { A } ) ) =/= 0p ) -> ( F quot ( Xp oF - ( CC X. { A } ) ) ) e. ( Poly ` CC ) ) | 
						
							| 46 | 9 31 44 45 | syl3anc |  |-  ( ph -> ( F quot ( Xp oF - ( CC X. { A } ) ) ) e. ( Poly ` CC ) ) | 
						
							| 47 |  | plyf |  |-  ( ( F quot ( Xp oF - ( CC X. { A } ) ) ) e. ( Poly ` CC ) -> ( F quot ( Xp oF - ( CC X. { A } ) ) ) : CC --> CC ) | 
						
							| 48 | 46 47 | syl |  |-  ( ph -> ( F quot ( Xp oF - ( CC X. { A } ) ) ) : CC --> CC ) | 
						
							| 49 |  | ofmulrt |  |-  ( ( CC e. _V /\ ( Xp oF - ( CC X. { A } ) ) : CC --> CC /\ ( F quot ( Xp oF - ( CC X. { A } ) ) ) : CC --> CC ) -> ( `' ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) " { 0 } ) = ( ( `' ( Xp oF - ( CC X. { A } ) ) " { 0 } ) u. ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) ) | 
						
							| 50 | 23 33 48 49 | syl3anc |  |-  ( ph -> ( `' ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) " { 0 } ) = ( ( `' ( Xp oF - ( CC X. { A } ) ) " { 0 } ) u. ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) ) | 
						
							| 51 | 35 | simp3d |  |-  ( ph -> ( `' ( Xp oF - ( CC X. { A } ) ) " { 0 } ) = { A } ) | 
						
							| 52 | 51 | uneq1d |  |-  ( ph -> ( ( `' ( Xp oF - ( CC X. { A } ) ) " { 0 } ) u. ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) = ( { A } u. ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) ) | 
						
							| 53 | 21 50 52 | 3eqtrd |  |-  ( ph -> ( `' F " { 0 } ) = ( { A } u. ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) ) | 
						
							| 54 |  | uncom |  |-  ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) = ( { A } u. ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) | 
						
							| 55 | 53 1 54 | 3eqtr4g |  |-  ( ph -> R = ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) ) | 
						
							| 56 | 25 | a1i |  |-  ( ph -> 1 e. CC ) | 
						
							| 57 |  | dgrcl |  |-  ( ( F quot ( Xp oF - ( CC X. { A } ) ) ) e. ( Poly ` CC ) -> ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) e. NN0 ) | 
						
							| 58 | 46 57 | syl |  |-  ( ph -> ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) e. NN0 ) | 
						
							| 59 | 58 | nn0cnd |  |-  ( ph -> ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) e. CC ) | 
						
							| 60 | 2 | nn0cnd |  |-  ( ph -> D e. CC ) | 
						
							| 61 |  | addcom |  |-  ( ( 1 e. CC /\ D e. CC ) -> ( 1 + D ) = ( D + 1 ) ) | 
						
							| 62 | 25 60 61 | sylancr |  |-  ( ph -> ( 1 + D ) = ( D + 1 ) ) | 
						
							| 63 | 19 | fveq2d |  |-  ( ph -> ( deg ` F ) = ( deg ` ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) ) | 
						
							| 64 | 8 | simprd |  |-  ( ph -> F =/= 0p ) | 
						
							| 65 | 19 | eqcomd |  |-  ( ph -> ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) = F ) | 
						
							| 66 |  | 0cnd |  |-  ( ph -> 0 e. CC ) | 
						
							| 67 |  | mul01 |  |-  ( x e. CC -> ( x x. 0 ) = 0 ) | 
						
							| 68 | 67 | adantl |  |-  ( ( ph /\ x e. CC ) -> ( x x. 0 ) = 0 ) | 
						
							| 69 | 23 33 66 66 68 | caofid1 |  |-  ( ph -> ( ( Xp oF - ( CC X. { A } ) ) oF x. ( CC X. { 0 } ) ) = ( CC X. { 0 } ) ) | 
						
							| 70 |  | df-0p |  |-  0p = ( CC X. { 0 } ) | 
						
							| 71 | 70 | oveq2i |  |-  ( ( Xp oF - ( CC X. { A } ) ) oF x. 0p ) = ( ( Xp oF - ( CC X. { A } ) ) oF x. ( CC X. { 0 } ) ) | 
						
							| 72 | 69 71 70 | 3eqtr4g |  |-  ( ph -> ( ( Xp oF - ( CC X. { A } ) ) oF x. 0p ) = 0p ) | 
						
							| 73 | 64 65 72 | 3netr4d |  |-  ( ph -> ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) =/= ( ( Xp oF - ( CC X. { A } ) ) oF x. 0p ) ) | 
						
							| 74 |  | oveq2 |  |-  ( ( F quot ( Xp oF - ( CC X. { A } ) ) ) = 0p -> ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) = ( ( Xp oF - ( CC X. { A } ) ) oF x. 0p ) ) | 
						
							| 75 | 74 | necon3i |  |-  ( ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) =/= ( ( Xp oF - ( CC X. { A } ) ) oF x. 0p ) -> ( F quot ( Xp oF - ( CC X. { A } ) ) ) =/= 0p ) | 
						
							| 76 | 73 75 | syl |  |-  ( ph -> ( F quot ( Xp oF - ( CC X. { A } ) ) ) =/= 0p ) | 
						
							| 77 |  | eqid |  |-  ( deg ` ( Xp oF - ( CC X. { A } ) ) ) = ( deg ` ( Xp oF - ( CC X. { A } ) ) ) | 
						
							| 78 |  | eqid |  |-  ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) = ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) | 
						
							| 79 | 77 78 | dgrmul |  |-  ( ( ( ( Xp oF - ( CC X. { A } ) ) e. ( Poly ` CC ) /\ ( Xp oF - ( CC X. { A } ) ) =/= 0p ) /\ ( ( F quot ( Xp oF - ( CC X. { A } ) ) ) e. ( Poly ` CC ) /\ ( F quot ( Xp oF - ( CC X. { A } ) ) ) =/= 0p ) ) -> ( deg ` ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) = ( ( deg ` ( Xp oF - ( CC X. { A } ) ) ) + ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) ) | 
						
							| 80 | 31 44 46 76 79 | syl22anc |  |-  ( ph -> ( deg ` ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) = ( ( deg ` ( Xp oF - ( CC X. { A } ) ) ) + ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) ) | 
						
							| 81 | 63 4 80 | 3eqtr3d |  |-  ( ph -> ( D + 1 ) = ( ( deg ` ( Xp oF - ( CC X. { A } ) ) ) + ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) ) | 
						
							| 82 | 36 | oveq1d |  |-  ( ph -> ( ( deg ` ( Xp oF - ( CC X. { A } ) ) ) + ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) = ( 1 + ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) ) | 
						
							| 83 | 62 81 82 | 3eqtrrd |  |-  ( ph -> ( 1 + ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) = ( 1 + D ) ) | 
						
							| 84 | 56 59 60 83 | addcanad |  |-  ( ph -> ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) = D ) | 
						
							| 85 |  | fveqeq2 |  |-  ( g = ( F quot ( Xp oF - ( CC X. { A } ) ) ) -> ( ( deg ` g ) = D <-> ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) = D ) ) | 
						
							| 86 |  | cnveq |  |-  ( g = ( F quot ( Xp oF - ( CC X. { A } ) ) ) -> `' g = `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) | 
						
							| 87 | 86 | imaeq1d |  |-  ( g = ( F quot ( Xp oF - ( CC X. { A } ) ) ) -> ( `' g " { 0 } ) = ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) | 
						
							| 88 | 87 | eleq1d |  |-  ( g = ( F quot ( Xp oF - ( CC X. { A } ) ) ) -> ( ( `' g " { 0 } ) e. Fin <-> ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) e. Fin ) ) | 
						
							| 89 | 87 | fveq2d |  |-  ( g = ( F quot ( Xp oF - ( CC X. { A } ) ) ) -> ( # ` ( `' g " { 0 } ) ) = ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) ) | 
						
							| 90 |  | fveq2 |  |-  ( g = ( F quot ( Xp oF - ( CC X. { A } ) ) ) -> ( deg ` g ) = ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) | 
						
							| 91 | 89 90 | breq12d |  |-  ( g = ( F quot ( Xp oF - ( CC X. { A } ) ) ) -> ( ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) <-> ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) <_ ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) ) | 
						
							| 92 | 88 91 | anbi12d |  |-  ( g = ( F quot ( Xp oF - ( CC X. { A } ) ) ) -> ( ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) <-> ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) e. Fin /\ ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) <_ ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) ) ) | 
						
							| 93 | 85 92 | imbi12d |  |-  ( g = ( F quot ( Xp oF - ( CC X. { A } ) ) ) -> ( ( ( deg ` g ) = D -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) <-> ( ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) = D -> ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) e. Fin /\ ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) <_ ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) ) ) ) | 
						
							| 94 |  | eldifsn |  |-  ( ( F quot ( Xp oF - ( CC X. { A } ) ) ) e. ( ( Poly ` CC ) \ { 0p } ) <-> ( ( F quot ( Xp oF - ( CC X. { A } ) ) ) e. ( Poly ` CC ) /\ ( F quot ( Xp oF - ( CC X. { A } ) ) ) =/= 0p ) ) | 
						
							| 95 | 46 76 94 | sylanbrc |  |-  ( ph -> ( F quot ( Xp oF - ( CC X. { A } ) ) ) e. ( ( Poly ` CC ) \ { 0p } ) ) | 
						
							| 96 | 93 6 95 | rspcdva |  |-  ( ph -> ( ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) = D -> ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) e. Fin /\ ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) <_ ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) ) ) | 
						
							| 97 | 84 96 | mpd |  |-  ( ph -> ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) e. Fin /\ ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) <_ ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) ) | 
						
							| 98 | 97 | simpld |  |-  ( ph -> ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) e. Fin ) | 
						
							| 99 |  | snfi |  |-  { A } e. Fin | 
						
							| 100 |  | unfi |  |-  ( ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) e. Fin /\ { A } e. Fin ) -> ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) e. Fin ) | 
						
							| 101 | 98 99 100 | sylancl |  |-  ( ph -> ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) e. Fin ) | 
						
							| 102 | 55 101 | eqeltrd |  |-  ( ph -> R e. Fin ) | 
						
							| 103 | 55 | fveq2d |  |-  ( ph -> ( # ` R ) = ( # ` ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) ) ) | 
						
							| 104 |  | hashcl |  |-  ( ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) e. Fin -> ( # ` ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) ) e. NN0 ) | 
						
							| 105 | 101 104 | syl |  |-  ( ph -> ( # ` ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) ) e. NN0 ) | 
						
							| 106 | 105 | nn0red |  |-  ( ph -> ( # ` ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) ) e. RR ) | 
						
							| 107 |  | hashcl |  |-  ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) e. Fin -> ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) e. NN0 ) | 
						
							| 108 | 98 107 | syl |  |-  ( ph -> ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) e. NN0 ) | 
						
							| 109 | 108 | nn0red |  |-  ( ph -> ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) e. RR ) | 
						
							| 110 |  | peano2re |  |-  ( ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) e. RR -> ( ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) + 1 ) e. RR ) | 
						
							| 111 | 109 110 | syl |  |-  ( ph -> ( ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) + 1 ) e. RR ) | 
						
							| 112 |  | dgrcl |  |-  ( F e. ( Poly ` CC ) -> ( deg ` F ) e. NN0 ) | 
						
							| 113 | 9 112 | syl |  |-  ( ph -> ( deg ` F ) e. NN0 ) | 
						
							| 114 | 113 | nn0red |  |-  ( ph -> ( deg ` F ) e. RR ) | 
						
							| 115 |  | hashun2 |  |-  ( ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) e. Fin /\ { A } e. Fin ) -> ( # ` ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) ) <_ ( ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) + ( # ` { A } ) ) ) | 
						
							| 116 | 98 99 115 | sylancl |  |-  ( ph -> ( # ` ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) ) <_ ( ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) + ( # ` { A } ) ) ) | 
						
							| 117 |  | hashsng |  |-  ( A e. CC -> ( # ` { A } ) = 1 ) | 
						
							| 118 | 15 117 | syl |  |-  ( ph -> ( # ` { A } ) = 1 ) | 
						
							| 119 | 118 | oveq2d |  |-  ( ph -> ( ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) + ( # ` { A } ) ) = ( ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) + 1 ) ) | 
						
							| 120 | 116 119 | breqtrd |  |-  ( ph -> ( # ` ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) ) <_ ( ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) + 1 ) ) | 
						
							| 121 | 2 | nn0red |  |-  ( ph -> D e. RR ) | 
						
							| 122 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 123 | 97 | simprd |  |-  ( ph -> ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) <_ ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) | 
						
							| 124 | 123 84 | breqtrd |  |-  ( ph -> ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) <_ D ) | 
						
							| 125 | 109 121 122 124 | leadd1dd |  |-  ( ph -> ( ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) + 1 ) <_ ( D + 1 ) ) | 
						
							| 126 | 125 4 | breqtrrd |  |-  ( ph -> ( ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) + 1 ) <_ ( deg ` F ) ) | 
						
							| 127 | 106 111 114 120 126 | letrd |  |-  ( ph -> ( # ` ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) ) <_ ( deg ` F ) ) | 
						
							| 128 | 103 127 | eqbrtrd |  |-  ( ph -> ( # ` R ) <_ ( deg ` F ) ) | 
						
							| 129 | 102 128 | jca |  |-  ( ph -> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) |