Step |
Hyp |
Ref |
Expression |
1 |
|
fta1.1 |
|- R = ( `' F " { 0 } ) |
2 |
|
fta1.2 |
|- ( ph -> D e. NN0 ) |
3 |
|
fta1.3 |
|- ( ph -> F e. ( ( Poly ` CC ) \ { 0p } ) ) |
4 |
|
fta1.4 |
|- ( ph -> ( deg ` F ) = ( D + 1 ) ) |
5 |
|
fta1.5 |
|- ( ph -> A e. ( `' F " { 0 } ) ) |
6 |
|
fta1.6 |
|- ( ph -> A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = D -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) |
7 |
|
eldifsn |
|- ( F e. ( ( Poly ` CC ) \ { 0p } ) <-> ( F e. ( Poly ` CC ) /\ F =/= 0p ) ) |
8 |
3 7
|
sylib |
|- ( ph -> ( F e. ( Poly ` CC ) /\ F =/= 0p ) ) |
9 |
8
|
simpld |
|- ( ph -> F e. ( Poly ` CC ) ) |
10 |
|
plyf |
|- ( F e. ( Poly ` CC ) -> F : CC --> CC ) |
11 |
|
ffn |
|- ( F : CC --> CC -> F Fn CC ) |
12 |
|
fniniseg |
|- ( F Fn CC -> ( A e. ( `' F " { 0 } ) <-> ( A e. CC /\ ( F ` A ) = 0 ) ) ) |
13 |
9 10 11 12
|
4syl |
|- ( ph -> ( A e. ( `' F " { 0 } ) <-> ( A e. CC /\ ( F ` A ) = 0 ) ) ) |
14 |
5 13
|
mpbid |
|- ( ph -> ( A e. CC /\ ( F ` A ) = 0 ) ) |
15 |
14
|
simpld |
|- ( ph -> A e. CC ) |
16 |
14
|
simprd |
|- ( ph -> ( F ` A ) = 0 ) |
17 |
|
eqid |
|- ( Xp oF - ( CC X. { A } ) ) = ( Xp oF - ( CC X. { A } ) ) |
18 |
17
|
facth |
|- ( ( F e. ( Poly ` CC ) /\ A e. CC /\ ( F ` A ) = 0 ) -> F = ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) |
19 |
9 15 16 18
|
syl3anc |
|- ( ph -> F = ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) |
20 |
19
|
cnveqd |
|- ( ph -> `' F = `' ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) |
21 |
20
|
imaeq1d |
|- ( ph -> ( `' F " { 0 } ) = ( `' ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) " { 0 } ) ) |
22 |
|
cnex |
|- CC e. _V |
23 |
22
|
a1i |
|- ( ph -> CC e. _V ) |
24 |
|
ssid |
|- CC C_ CC |
25 |
|
ax-1cn |
|- 1 e. CC |
26 |
|
plyid |
|- ( ( CC C_ CC /\ 1 e. CC ) -> Xp e. ( Poly ` CC ) ) |
27 |
24 25 26
|
mp2an |
|- Xp e. ( Poly ` CC ) |
28 |
|
plyconst |
|- ( ( CC C_ CC /\ A e. CC ) -> ( CC X. { A } ) e. ( Poly ` CC ) ) |
29 |
24 15 28
|
sylancr |
|- ( ph -> ( CC X. { A } ) e. ( Poly ` CC ) ) |
30 |
|
plysubcl |
|- ( ( Xp e. ( Poly ` CC ) /\ ( CC X. { A } ) e. ( Poly ` CC ) ) -> ( Xp oF - ( CC X. { A } ) ) e. ( Poly ` CC ) ) |
31 |
27 29 30
|
sylancr |
|- ( ph -> ( Xp oF - ( CC X. { A } ) ) e. ( Poly ` CC ) ) |
32 |
|
plyf |
|- ( ( Xp oF - ( CC X. { A } ) ) e. ( Poly ` CC ) -> ( Xp oF - ( CC X. { A } ) ) : CC --> CC ) |
33 |
31 32
|
syl |
|- ( ph -> ( Xp oF - ( CC X. { A } ) ) : CC --> CC ) |
34 |
17
|
plyremlem |
|- ( A e. CC -> ( ( Xp oF - ( CC X. { A } ) ) e. ( Poly ` CC ) /\ ( deg ` ( Xp oF - ( CC X. { A } ) ) ) = 1 /\ ( `' ( Xp oF - ( CC X. { A } ) ) " { 0 } ) = { A } ) ) |
35 |
15 34
|
syl |
|- ( ph -> ( ( Xp oF - ( CC X. { A } ) ) e. ( Poly ` CC ) /\ ( deg ` ( Xp oF - ( CC X. { A } ) ) ) = 1 /\ ( `' ( Xp oF - ( CC X. { A } ) ) " { 0 } ) = { A } ) ) |
36 |
35
|
simp2d |
|- ( ph -> ( deg ` ( Xp oF - ( CC X. { A } ) ) ) = 1 ) |
37 |
|
ax-1ne0 |
|- 1 =/= 0 |
38 |
37
|
a1i |
|- ( ph -> 1 =/= 0 ) |
39 |
36 38
|
eqnetrd |
|- ( ph -> ( deg ` ( Xp oF - ( CC X. { A } ) ) ) =/= 0 ) |
40 |
|
fveq2 |
|- ( ( Xp oF - ( CC X. { A } ) ) = 0p -> ( deg ` ( Xp oF - ( CC X. { A } ) ) ) = ( deg ` 0p ) ) |
41 |
|
dgr0 |
|- ( deg ` 0p ) = 0 |
42 |
40 41
|
eqtrdi |
|- ( ( Xp oF - ( CC X. { A } ) ) = 0p -> ( deg ` ( Xp oF - ( CC X. { A } ) ) ) = 0 ) |
43 |
42
|
necon3i |
|- ( ( deg ` ( Xp oF - ( CC X. { A } ) ) ) =/= 0 -> ( Xp oF - ( CC X. { A } ) ) =/= 0p ) |
44 |
39 43
|
syl |
|- ( ph -> ( Xp oF - ( CC X. { A } ) ) =/= 0p ) |
45 |
|
quotcl2 |
|- ( ( F e. ( Poly ` CC ) /\ ( Xp oF - ( CC X. { A } ) ) e. ( Poly ` CC ) /\ ( Xp oF - ( CC X. { A } ) ) =/= 0p ) -> ( F quot ( Xp oF - ( CC X. { A } ) ) ) e. ( Poly ` CC ) ) |
46 |
9 31 44 45
|
syl3anc |
|- ( ph -> ( F quot ( Xp oF - ( CC X. { A } ) ) ) e. ( Poly ` CC ) ) |
47 |
|
plyf |
|- ( ( F quot ( Xp oF - ( CC X. { A } ) ) ) e. ( Poly ` CC ) -> ( F quot ( Xp oF - ( CC X. { A } ) ) ) : CC --> CC ) |
48 |
46 47
|
syl |
|- ( ph -> ( F quot ( Xp oF - ( CC X. { A } ) ) ) : CC --> CC ) |
49 |
|
ofmulrt |
|- ( ( CC e. _V /\ ( Xp oF - ( CC X. { A } ) ) : CC --> CC /\ ( F quot ( Xp oF - ( CC X. { A } ) ) ) : CC --> CC ) -> ( `' ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) " { 0 } ) = ( ( `' ( Xp oF - ( CC X. { A } ) ) " { 0 } ) u. ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) ) |
50 |
23 33 48 49
|
syl3anc |
|- ( ph -> ( `' ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) " { 0 } ) = ( ( `' ( Xp oF - ( CC X. { A } ) ) " { 0 } ) u. ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) ) |
51 |
35
|
simp3d |
|- ( ph -> ( `' ( Xp oF - ( CC X. { A } ) ) " { 0 } ) = { A } ) |
52 |
51
|
uneq1d |
|- ( ph -> ( ( `' ( Xp oF - ( CC X. { A } ) ) " { 0 } ) u. ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) = ( { A } u. ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) ) |
53 |
21 50 52
|
3eqtrd |
|- ( ph -> ( `' F " { 0 } ) = ( { A } u. ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) ) |
54 |
|
uncom |
|- ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) = ( { A } u. ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) |
55 |
53 1 54
|
3eqtr4g |
|- ( ph -> R = ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) ) |
56 |
25
|
a1i |
|- ( ph -> 1 e. CC ) |
57 |
|
dgrcl |
|- ( ( F quot ( Xp oF - ( CC X. { A } ) ) ) e. ( Poly ` CC ) -> ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) e. NN0 ) |
58 |
46 57
|
syl |
|- ( ph -> ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) e. NN0 ) |
59 |
58
|
nn0cnd |
|- ( ph -> ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) e. CC ) |
60 |
2
|
nn0cnd |
|- ( ph -> D e. CC ) |
61 |
|
addcom |
|- ( ( 1 e. CC /\ D e. CC ) -> ( 1 + D ) = ( D + 1 ) ) |
62 |
25 60 61
|
sylancr |
|- ( ph -> ( 1 + D ) = ( D + 1 ) ) |
63 |
19
|
fveq2d |
|- ( ph -> ( deg ` F ) = ( deg ` ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) ) |
64 |
8
|
simprd |
|- ( ph -> F =/= 0p ) |
65 |
19
|
eqcomd |
|- ( ph -> ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) = F ) |
66 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
67 |
|
mul01 |
|- ( x e. CC -> ( x x. 0 ) = 0 ) |
68 |
67
|
adantl |
|- ( ( ph /\ x e. CC ) -> ( x x. 0 ) = 0 ) |
69 |
23 33 66 66 68
|
caofid1 |
|- ( ph -> ( ( Xp oF - ( CC X. { A } ) ) oF x. ( CC X. { 0 } ) ) = ( CC X. { 0 } ) ) |
70 |
|
df-0p |
|- 0p = ( CC X. { 0 } ) |
71 |
70
|
oveq2i |
|- ( ( Xp oF - ( CC X. { A } ) ) oF x. 0p ) = ( ( Xp oF - ( CC X. { A } ) ) oF x. ( CC X. { 0 } ) ) |
72 |
69 71 70
|
3eqtr4g |
|- ( ph -> ( ( Xp oF - ( CC X. { A } ) ) oF x. 0p ) = 0p ) |
73 |
64 65 72
|
3netr4d |
|- ( ph -> ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) =/= ( ( Xp oF - ( CC X. { A } ) ) oF x. 0p ) ) |
74 |
|
oveq2 |
|- ( ( F quot ( Xp oF - ( CC X. { A } ) ) ) = 0p -> ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) = ( ( Xp oF - ( CC X. { A } ) ) oF x. 0p ) ) |
75 |
74
|
necon3i |
|- ( ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) =/= ( ( Xp oF - ( CC X. { A } ) ) oF x. 0p ) -> ( F quot ( Xp oF - ( CC X. { A } ) ) ) =/= 0p ) |
76 |
73 75
|
syl |
|- ( ph -> ( F quot ( Xp oF - ( CC X. { A } ) ) ) =/= 0p ) |
77 |
|
eqid |
|- ( deg ` ( Xp oF - ( CC X. { A } ) ) ) = ( deg ` ( Xp oF - ( CC X. { A } ) ) ) |
78 |
|
eqid |
|- ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) = ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) |
79 |
77 78
|
dgrmul |
|- ( ( ( ( Xp oF - ( CC X. { A } ) ) e. ( Poly ` CC ) /\ ( Xp oF - ( CC X. { A } ) ) =/= 0p ) /\ ( ( F quot ( Xp oF - ( CC X. { A } ) ) ) e. ( Poly ` CC ) /\ ( F quot ( Xp oF - ( CC X. { A } ) ) ) =/= 0p ) ) -> ( deg ` ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) = ( ( deg ` ( Xp oF - ( CC X. { A } ) ) ) + ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) ) |
80 |
31 44 46 76 79
|
syl22anc |
|- ( ph -> ( deg ` ( ( Xp oF - ( CC X. { A } ) ) oF x. ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) = ( ( deg ` ( Xp oF - ( CC X. { A } ) ) ) + ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) ) |
81 |
63 4 80
|
3eqtr3d |
|- ( ph -> ( D + 1 ) = ( ( deg ` ( Xp oF - ( CC X. { A } ) ) ) + ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) ) |
82 |
36
|
oveq1d |
|- ( ph -> ( ( deg ` ( Xp oF - ( CC X. { A } ) ) ) + ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) = ( 1 + ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) ) |
83 |
62 81 82
|
3eqtrrd |
|- ( ph -> ( 1 + ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) = ( 1 + D ) ) |
84 |
56 59 60 83
|
addcanad |
|- ( ph -> ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) = D ) |
85 |
|
fveqeq2 |
|- ( g = ( F quot ( Xp oF - ( CC X. { A } ) ) ) -> ( ( deg ` g ) = D <-> ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) = D ) ) |
86 |
|
cnveq |
|- ( g = ( F quot ( Xp oF - ( CC X. { A } ) ) ) -> `' g = `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) |
87 |
86
|
imaeq1d |
|- ( g = ( F quot ( Xp oF - ( CC X. { A } ) ) ) -> ( `' g " { 0 } ) = ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) |
88 |
87
|
eleq1d |
|- ( g = ( F quot ( Xp oF - ( CC X. { A } ) ) ) -> ( ( `' g " { 0 } ) e. Fin <-> ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) e. Fin ) ) |
89 |
87
|
fveq2d |
|- ( g = ( F quot ( Xp oF - ( CC X. { A } ) ) ) -> ( # ` ( `' g " { 0 } ) ) = ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) ) |
90 |
|
fveq2 |
|- ( g = ( F quot ( Xp oF - ( CC X. { A } ) ) ) -> ( deg ` g ) = ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) |
91 |
89 90
|
breq12d |
|- ( g = ( F quot ( Xp oF - ( CC X. { A } ) ) ) -> ( ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) <-> ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) <_ ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) ) |
92 |
88 91
|
anbi12d |
|- ( g = ( F quot ( Xp oF - ( CC X. { A } ) ) ) -> ( ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) <-> ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) e. Fin /\ ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) <_ ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) ) ) |
93 |
85 92
|
imbi12d |
|- ( g = ( F quot ( Xp oF - ( CC X. { A } ) ) ) -> ( ( ( deg ` g ) = D -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) <-> ( ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) = D -> ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) e. Fin /\ ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) <_ ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) ) ) ) |
94 |
|
eldifsn |
|- ( ( F quot ( Xp oF - ( CC X. { A } ) ) ) e. ( ( Poly ` CC ) \ { 0p } ) <-> ( ( F quot ( Xp oF - ( CC X. { A } ) ) ) e. ( Poly ` CC ) /\ ( F quot ( Xp oF - ( CC X. { A } ) ) ) =/= 0p ) ) |
95 |
46 76 94
|
sylanbrc |
|- ( ph -> ( F quot ( Xp oF - ( CC X. { A } ) ) ) e. ( ( Poly ` CC ) \ { 0p } ) ) |
96 |
93 6 95
|
rspcdva |
|- ( ph -> ( ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) = D -> ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) e. Fin /\ ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) <_ ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) ) ) |
97 |
84 96
|
mpd |
|- ( ph -> ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) e. Fin /\ ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) <_ ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) ) |
98 |
97
|
simpld |
|- ( ph -> ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) e. Fin ) |
99 |
|
snfi |
|- { A } e. Fin |
100 |
|
unfi |
|- ( ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) e. Fin /\ { A } e. Fin ) -> ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) e. Fin ) |
101 |
98 99 100
|
sylancl |
|- ( ph -> ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) e. Fin ) |
102 |
55 101
|
eqeltrd |
|- ( ph -> R e. Fin ) |
103 |
55
|
fveq2d |
|- ( ph -> ( # ` R ) = ( # ` ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) ) ) |
104 |
|
hashcl |
|- ( ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) e. Fin -> ( # ` ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) ) e. NN0 ) |
105 |
101 104
|
syl |
|- ( ph -> ( # ` ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) ) e. NN0 ) |
106 |
105
|
nn0red |
|- ( ph -> ( # ` ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) ) e. RR ) |
107 |
|
hashcl |
|- ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) e. Fin -> ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) e. NN0 ) |
108 |
98 107
|
syl |
|- ( ph -> ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) e. NN0 ) |
109 |
108
|
nn0red |
|- ( ph -> ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) e. RR ) |
110 |
|
peano2re |
|- ( ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) e. RR -> ( ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) + 1 ) e. RR ) |
111 |
109 110
|
syl |
|- ( ph -> ( ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) + 1 ) e. RR ) |
112 |
|
dgrcl |
|- ( F e. ( Poly ` CC ) -> ( deg ` F ) e. NN0 ) |
113 |
9 112
|
syl |
|- ( ph -> ( deg ` F ) e. NN0 ) |
114 |
113
|
nn0red |
|- ( ph -> ( deg ` F ) e. RR ) |
115 |
|
hashun2 |
|- ( ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) e. Fin /\ { A } e. Fin ) -> ( # ` ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) ) <_ ( ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) + ( # ` { A } ) ) ) |
116 |
98 99 115
|
sylancl |
|- ( ph -> ( # ` ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) ) <_ ( ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) + ( # ` { A } ) ) ) |
117 |
|
hashsng |
|- ( A e. CC -> ( # ` { A } ) = 1 ) |
118 |
15 117
|
syl |
|- ( ph -> ( # ` { A } ) = 1 ) |
119 |
118
|
oveq2d |
|- ( ph -> ( ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) + ( # ` { A } ) ) = ( ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) + 1 ) ) |
120 |
116 119
|
breqtrd |
|- ( ph -> ( # ` ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) ) <_ ( ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) + 1 ) ) |
121 |
2
|
nn0red |
|- ( ph -> D e. RR ) |
122 |
|
1red |
|- ( ph -> 1 e. RR ) |
123 |
97
|
simprd |
|- ( ph -> ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) <_ ( deg ` ( F quot ( Xp oF - ( CC X. { A } ) ) ) ) ) |
124 |
123 84
|
breqtrd |
|- ( ph -> ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) <_ D ) |
125 |
109 121 122 124
|
leadd1dd |
|- ( ph -> ( ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) + 1 ) <_ ( D + 1 ) ) |
126 |
125 4
|
breqtrrd |
|- ( ph -> ( ( # ` ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) ) + 1 ) <_ ( deg ` F ) ) |
127 |
106 111 114 120 126
|
letrd |
|- ( ph -> ( # ` ( ( `' ( F quot ( Xp oF - ( CC X. { A } ) ) ) " { 0 } ) u. { A } ) ) <_ ( deg ` F ) ) |
128 |
103 127
|
eqbrtrd |
|- ( ph -> ( # ` R ) <_ ( deg ` F ) ) |
129 |
102 128
|
jca |
|- ( ph -> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) |