Step |
Hyp |
Ref |
Expression |
1 |
|
ftalem.1 |
|- A = ( coeff ` F ) |
2 |
|
ftalem.2 |
|- N = ( deg ` F ) |
3 |
|
ftalem.3 |
|- ( ph -> F e. ( Poly ` S ) ) |
4 |
|
ftalem.4 |
|- ( ph -> N e. NN ) |
5 |
|
ftalem4.5 |
|- ( ph -> ( F ` 0 ) =/= 0 ) |
6 |
|
ftalem4.6 |
|- K = inf ( { n e. NN | ( A ` n ) =/= 0 } , RR , < ) |
7 |
|
ftalem4.7 |
|- T = ( -u ( ( F ` 0 ) / ( A ` K ) ) ^c ( 1 / K ) ) |
8 |
|
ftalem4.8 |
|- U = ( ( abs ` ( F ` 0 ) ) / ( sum_ k e. ( ( K + 1 ) ... N ) ( abs ` ( ( A ` k ) x. ( T ^ k ) ) ) + 1 ) ) |
9 |
|
ftalem4.9 |
|- X = if ( 1 <_ U , 1 , U ) |
10 |
|
ssrab2 |
|- { n e. NN | ( A ` n ) =/= 0 } C_ NN |
11 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
12 |
10 11
|
sseqtri |
|- { n e. NN | ( A ` n ) =/= 0 } C_ ( ZZ>= ` 1 ) |
13 |
|
fveq2 |
|- ( n = N -> ( A ` n ) = ( A ` N ) ) |
14 |
13
|
neeq1d |
|- ( n = N -> ( ( A ` n ) =/= 0 <-> ( A ` N ) =/= 0 ) ) |
15 |
4
|
nnne0d |
|- ( ph -> N =/= 0 ) |
16 |
2 1
|
dgreq0 |
|- ( F e. ( Poly ` S ) -> ( F = 0p <-> ( A ` N ) = 0 ) ) |
17 |
3 16
|
syl |
|- ( ph -> ( F = 0p <-> ( A ` N ) = 0 ) ) |
18 |
|
fveq2 |
|- ( F = 0p -> ( deg ` F ) = ( deg ` 0p ) ) |
19 |
|
dgr0 |
|- ( deg ` 0p ) = 0 |
20 |
18 19
|
eqtrdi |
|- ( F = 0p -> ( deg ` F ) = 0 ) |
21 |
2 20
|
eqtrid |
|- ( F = 0p -> N = 0 ) |
22 |
17 21
|
syl6bir |
|- ( ph -> ( ( A ` N ) = 0 -> N = 0 ) ) |
23 |
22
|
necon3d |
|- ( ph -> ( N =/= 0 -> ( A ` N ) =/= 0 ) ) |
24 |
15 23
|
mpd |
|- ( ph -> ( A ` N ) =/= 0 ) |
25 |
14 4 24
|
elrabd |
|- ( ph -> N e. { n e. NN | ( A ` n ) =/= 0 } ) |
26 |
25
|
ne0d |
|- ( ph -> { n e. NN | ( A ` n ) =/= 0 } =/= (/) ) |
27 |
|
infssuzcl |
|- ( ( { n e. NN | ( A ` n ) =/= 0 } C_ ( ZZ>= ` 1 ) /\ { n e. NN | ( A ` n ) =/= 0 } =/= (/) ) -> inf ( { n e. NN | ( A ` n ) =/= 0 } , RR , < ) e. { n e. NN | ( A ` n ) =/= 0 } ) |
28 |
12 26 27
|
sylancr |
|- ( ph -> inf ( { n e. NN | ( A ` n ) =/= 0 } , RR , < ) e. { n e. NN | ( A ` n ) =/= 0 } ) |
29 |
6 28
|
eqeltrid |
|- ( ph -> K e. { n e. NN | ( A ` n ) =/= 0 } ) |
30 |
|
fveq2 |
|- ( n = K -> ( A ` n ) = ( A ` K ) ) |
31 |
30
|
neeq1d |
|- ( n = K -> ( ( A ` n ) =/= 0 <-> ( A ` K ) =/= 0 ) ) |
32 |
31
|
elrab |
|- ( K e. { n e. NN | ( A ` n ) =/= 0 } <-> ( K e. NN /\ ( A ` K ) =/= 0 ) ) |
33 |
29 32
|
sylib |
|- ( ph -> ( K e. NN /\ ( A ` K ) =/= 0 ) ) |
34 |
|
plyf |
|- ( F e. ( Poly ` S ) -> F : CC --> CC ) |
35 |
3 34
|
syl |
|- ( ph -> F : CC --> CC ) |
36 |
|
0cn |
|- 0 e. CC |
37 |
|
ffvelrn |
|- ( ( F : CC --> CC /\ 0 e. CC ) -> ( F ` 0 ) e. CC ) |
38 |
35 36 37
|
sylancl |
|- ( ph -> ( F ` 0 ) e. CC ) |
39 |
1
|
coef3 |
|- ( F e. ( Poly ` S ) -> A : NN0 --> CC ) |
40 |
3 39
|
syl |
|- ( ph -> A : NN0 --> CC ) |
41 |
33
|
simpld |
|- ( ph -> K e. NN ) |
42 |
41
|
nnnn0d |
|- ( ph -> K e. NN0 ) |
43 |
40 42
|
ffvelrnd |
|- ( ph -> ( A ` K ) e. CC ) |
44 |
33
|
simprd |
|- ( ph -> ( A ` K ) =/= 0 ) |
45 |
38 43 44
|
divcld |
|- ( ph -> ( ( F ` 0 ) / ( A ` K ) ) e. CC ) |
46 |
45
|
negcld |
|- ( ph -> -u ( ( F ` 0 ) / ( A ` K ) ) e. CC ) |
47 |
41
|
nnrecred |
|- ( ph -> ( 1 / K ) e. RR ) |
48 |
47
|
recnd |
|- ( ph -> ( 1 / K ) e. CC ) |
49 |
46 48
|
cxpcld |
|- ( ph -> ( -u ( ( F ` 0 ) / ( A ` K ) ) ^c ( 1 / K ) ) e. CC ) |
50 |
7 49
|
eqeltrid |
|- ( ph -> T e. CC ) |
51 |
38 5
|
absrpcld |
|- ( ph -> ( abs ` ( F ` 0 ) ) e. RR+ ) |
52 |
|
fzfid |
|- ( ph -> ( ( K + 1 ) ... N ) e. Fin ) |
53 |
|
peano2nn0 |
|- ( K e. NN0 -> ( K + 1 ) e. NN0 ) |
54 |
42 53
|
syl |
|- ( ph -> ( K + 1 ) e. NN0 ) |
55 |
|
elfzuz |
|- ( k e. ( ( K + 1 ) ... N ) -> k e. ( ZZ>= ` ( K + 1 ) ) ) |
56 |
|
eluznn0 |
|- ( ( ( K + 1 ) e. NN0 /\ k e. ( ZZ>= ` ( K + 1 ) ) ) -> k e. NN0 ) |
57 |
54 55 56
|
syl2an |
|- ( ( ph /\ k e. ( ( K + 1 ) ... N ) ) -> k e. NN0 ) |
58 |
40
|
ffvelrnda |
|- ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. CC ) |
59 |
57 58
|
syldan |
|- ( ( ph /\ k e. ( ( K + 1 ) ... N ) ) -> ( A ` k ) e. CC ) |
60 |
|
expcl |
|- ( ( T e. CC /\ k e. NN0 ) -> ( T ^ k ) e. CC ) |
61 |
50 57 60
|
syl2an2r |
|- ( ( ph /\ k e. ( ( K + 1 ) ... N ) ) -> ( T ^ k ) e. CC ) |
62 |
59 61
|
mulcld |
|- ( ( ph /\ k e. ( ( K + 1 ) ... N ) ) -> ( ( A ` k ) x. ( T ^ k ) ) e. CC ) |
63 |
62
|
abscld |
|- ( ( ph /\ k e. ( ( K + 1 ) ... N ) ) -> ( abs ` ( ( A ` k ) x. ( T ^ k ) ) ) e. RR ) |
64 |
52 63
|
fsumrecl |
|- ( ph -> sum_ k e. ( ( K + 1 ) ... N ) ( abs ` ( ( A ` k ) x. ( T ^ k ) ) ) e. RR ) |
65 |
62
|
absge0d |
|- ( ( ph /\ k e. ( ( K + 1 ) ... N ) ) -> 0 <_ ( abs ` ( ( A ` k ) x. ( T ^ k ) ) ) ) |
66 |
52 63 65
|
fsumge0 |
|- ( ph -> 0 <_ sum_ k e. ( ( K + 1 ) ... N ) ( abs ` ( ( A ` k ) x. ( T ^ k ) ) ) ) |
67 |
64 66
|
ge0p1rpd |
|- ( ph -> ( sum_ k e. ( ( K + 1 ) ... N ) ( abs ` ( ( A ` k ) x. ( T ^ k ) ) ) + 1 ) e. RR+ ) |
68 |
51 67
|
rpdivcld |
|- ( ph -> ( ( abs ` ( F ` 0 ) ) / ( sum_ k e. ( ( K + 1 ) ... N ) ( abs ` ( ( A ` k ) x. ( T ^ k ) ) ) + 1 ) ) e. RR+ ) |
69 |
8 68
|
eqeltrid |
|- ( ph -> U e. RR+ ) |
70 |
|
1rp |
|- 1 e. RR+ |
71 |
|
ifcl |
|- ( ( 1 e. RR+ /\ U e. RR+ ) -> if ( 1 <_ U , 1 , U ) e. RR+ ) |
72 |
70 69 71
|
sylancr |
|- ( ph -> if ( 1 <_ U , 1 , U ) e. RR+ ) |
73 |
9 72
|
eqeltrid |
|- ( ph -> X e. RR+ ) |
74 |
50 69 73
|
3jca |
|- ( ph -> ( T e. CC /\ U e. RR+ /\ X e. RR+ ) ) |
75 |
33 74
|
jca |
|- ( ph -> ( ( K e. NN /\ ( A ` K ) =/= 0 ) /\ ( T e. CC /\ U e. RR+ /\ X e. RR+ ) ) ) |