Metamath Proof Explorer


Theorem ftalem4

Description: Lemma for fta : Closure of the auxiliary variables for ftalem5 . (Contributed by Mario Carneiro, 20-Sep-2014) (Revised by AV, 28-Sep-2020)

Ref Expression
Hypotheses ftalem.1
|- A = ( coeff ` F )
ftalem.2
|- N = ( deg ` F )
ftalem.3
|- ( ph -> F e. ( Poly ` S ) )
ftalem.4
|- ( ph -> N e. NN )
ftalem4.5
|- ( ph -> ( F ` 0 ) =/= 0 )
ftalem4.6
|- K = inf ( { n e. NN | ( A ` n ) =/= 0 } , RR , < )
ftalem4.7
|- T = ( -u ( ( F ` 0 ) / ( A ` K ) ) ^c ( 1 / K ) )
ftalem4.8
|- U = ( ( abs ` ( F ` 0 ) ) / ( sum_ k e. ( ( K + 1 ) ... N ) ( abs ` ( ( A ` k ) x. ( T ^ k ) ) ) + 1 ) )
ftalem4.9
|- X = if ( 1 <_ U , 1 , U )
Assertion ftalem4
|- ( ph -> ( ( K e. NN /\ ( A ` K ) =/= 0 ) /\ ( T e. CC /\ U e. RR+ /\ X e. RR+ ) ) )

Proof

Step Hyp Ref Expression
1 ftalem.1
 |-  A = ( coeff ` F )
2 ftalem.2
 |-  N = ( deg ` F )
3 ftalem.3
 |-  ( ph -> F e. ( Poly ` S ) )
4 ftalem.4
 |-  ( ph -> N e. NN )
5 ftalem4.5
 |-  ( ph -> ( F ` 0 ) =/= 0 )
6 ftalem4.6
 |-  K = inf ( { n e. NN | ( A ` n ) =/= 0 } , RR , < )
7 ftalem4.7
 |-  T = ( -u ( ( F ` 0 ) / ( A ` K ) ) ^c ( 1 / K ) )
8 ftalem4.8
 |-  U = ( ( abs ` ( F ` 0 ) ) / ( sum_ k e. ( ( K + 1 ) ... N ) ( abs ` ( ( A ` k ) x. ( T ^ k ) ) ) + 1 ) )
9 ftalem4.9
 |-  X = if ( 1 <_ U , 1 , U )
10 ssrab2
 |-  { n e. NN | ( A ` n ) =/= 0 } C_ NN
11 nnuz
 |-  NN = ( ZZ>= ` 1 )
12 10 11 sseqtri
 |-  { n e. NN | ( A ` n ) =/= 0 } C_ ( ZZ>= ` 1 )
13 fveq2
 |-  ( n = N -> ( A ` n ) = ( A ` N ) )
14 13 neeq1d
 |-  ( n = N -> ( ( A ` n ) =/= 0 <-> ( A ` N ) =/= 0 ) )
15 4 nnne0d
 |-  ( ph -> N =/= 0 )
16 2 1 dgreq0
 |-  ( F e. ( Poly ` S ) -> ( F = 0p <-> ( A ` N ) = 0 ) )
17 3 16 syl
 |-  ( ph -> ( F = 0p <-> ( A ` N ) = 0 ) )
18 fveq2
 |-  ( F = 0p -> ( deg ` F ) = ( deg ` 0p ) )
19 dgr0
 |-  ( deg ` 0p ) = 0
20 18 19 eqtrdi
 |-  ( F = 0p -> ( deg ` F ) = 0 )
21 2 20 eqtrid
 |-  ( F = 0p -> N = 0 )
22 17 21 syl6bir
 |-  ( ph -> ( ( A ` N ) = 0 -> N = 0 ) )
23 22 necon3d
 |-  ( ph -> ( N =/= 0 -> ( A ` N ) =/= 0 ) )
24 15 23 mpd
 |-  ( ph -> ( A ` N ) =/= 0 )
25 14 4 24 elrabd
 |-  ( ph -> N e. { n e. NN | ( A ` n ) =/= 0 } )
26 25 ne0d
 |-  ( ph -> { n e. NN | ( A ` n ) =/= 0 } =/= (/) )
27 infssuzcl
 |-  ( ( { n e. NN | ( A ` n ) =/= 0 } C_ ( ZZ>= ` 1 ) /\ { n e. NN | ( A ` n ) =/= 0 } =/= (/) ) -> inf ( { n e. NN | ( A ` n ) =/= 0 } , RR , < ) e. { n e. NN | ( A ` n ) =/= 0 } )
28 12 26 27 sylancr
 |-  ( ph -> inf ( { n e. NN | ( A ` n ) =/= 0 } , RR , < ) e. { n e. NN | ( A ` n ) =/= 0 } )
29 6 28 eqeltrid
 |-  ( ph -> K e. { n e. NN | ( A ` n ) =/= 0 } )
30 fveq2
 |-  ( n = K -> ( A ` n ) = ( A ` K ) )
31 30 neeq1d
 |-  ( n = K -> ( ( A ` n ) =/= 0 <-> ( A ` K ) =/= 0 ) )
32 31 elrab
 |-  ( K e. { n e. NN | ( A ` n ) =/= 0 } <-> ( K e. NN /\ ( A ` K ) =/= 0 ) )
33 29 32 sylib
 |-  ( ph -> ( K e. NN /\ ( A ` K ) =/= 0 ) )
34 plyf
 |-  ( F e. ( Poly ` S ) -> F : CC --> CC )
35 3 34 syl
 |-  ( ph -> F : CC --> CC )
36 0cn
 |-  0 e. CC
37 ffvelrn
 |-  ( ( F : CC --> CC /\ 0 e. CC ) -> ( F ` 0 ) e. CC )
38 35 36 37 sylancl
 |-  ( ph -> ( F ` 0 ) e. CC )
39 1 coef3
 |-  ( F e. ( Poly ` S ) -> A : NN0 --> CC )
40 3 39 syl
 |-  ( ph -> A : NN0 --> CC )
41 33 simpld
 |-  ( ph -> K e. NN )
42 41 nnnn0d
 |-  ( ph -> K e. NN0 )
43 40 42 ffvelrnd
 |-  ( ph -> ( A ` K ) e. CC )
44 33 simprd
 |-  ( ph -> ( A ` K ) =/= 0 )
45 38 43 44 divcld
 |-  ( ph -> ( ( F ` 0 ) / ( A ` K ) ) e. CC )
46 45 negcld
 |-  ( ph -> -u ( ( F ` 0 ) / ( A ` K ) ) e. CC )
47 41 nnrecred
 |-  ( ph -> ( 1 / K ) e. RR )
48 47 recnd
 |-  ( ph -> ( 1 / K ) e. CC )
49 46 48 cxpcld
 |-  ( ph -> ( -u ( ( F ` 0 ) / ( A ` K ) ) ^c ( 1 / K ) ) e. CC )
50 7 49 eqeltrid
 |-  ( ph -> T e. CC )
51 38 5 absrpcld
 |-  ( ph -> ( abs ` ( F ` 0 ) ) e. RR+ )
52 fzfid
 |-  ( ph -> ( ( K + 1 ) ... N ) e. Fin )
53 peano2nn0
 |-  ( K e. NN0 -> ( K + 1 ) e. NN0 )
54 42 53 syl
 |-  ( ph -> ( K + 1 ) e. NN0 )
55 elfzuz
 |-  ( k e. ( ( K + 1 ) ... N ) -> k e. ( ZZ>= ` ( K + 1 ) ) )
56 eluznn0
 |-  ( ( ( K + 1 ) e. NN0 /\ k e. ( ZZ>= ` ( K + 1 ) ) ) -> k e. NN0 )
57 54 55 56 syl2an
 |-  ( ( ph /\ k e. ( ( K + 1 ) ... N ) ) -> k e. NN0 )
58 40 ffvelrnda
 |-  ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. CC )
59 57 58 syldan
 |-  ( ( ph /\ k e. ( ( K + 1 ) ... N ) ) -> ( A ` k ) e. CC )
60 expcl
 |-  ( ( T e. CC /\ k e. NN0 ) -> ( T ^ k ) e. CC )
61 50 57 60 syl2an2r
 |-  ( ( ph /\ k e. ( ( K + 1 ) ... N ) ) -> ( T ^ k ) e. CC )
62 59 61 mulcld
 |-  ( ( ph /\ k e. ( ( K + 1 ) ... N ) ) -> ( ( A ` k ) x. ( T ^ k ) ) e. CC )
63 62 abscld
 |-  ( ( ph /\ k e. ( ( K + 1 ) ... N ) ) -> ( abs ` ( ( A ` k ) x. ( T ^ k ) ) ) e. RR )
64 52 63 fsumrecl
 |-  ( ph -> sum_ k e. ( ( K + 1 ) ... N ) ( abs ` ( ( A ` k ) x. ( T ^ k ) ) ) e. RR )
65 62 absge0d
 |-  ( ( ph /\ k e. ( ( K + 1 ) ... N ) ) -> 0 <_ ( abs ` ( ( A ` k ) x. ( T ^ k ) ) ) )
66 52 63 65 fsumge0
 |-  ( ph -> 0 <_ sum_ k e. ( ( K + 1 ) ... N ) ( abs ` ( ( A ` k ) x. ( T ^ k ) ) ) )
67 64 66 ge0p1rpd
 |-  ( ph -> ( sum_ k e. ( ( K + 1 ) ... N ) ( abs ` ( ( A ` k ) x. ( T ^ k ) ) ) + 1 ) e. RR+ )
68 51 67 rpdivcld
 |-  ( ph -> ( ( abs ` ( F ` 0 ) ) / ( sum_ k e. ( ( K + 1 ) ... N ) ( abs ` ( ( A ` k ) x. ( T ^ k ) ) ) + 1 ) ) e. RR+ )
69 8 68 eqeltrid
 |-  ( ph -> U e. RR+ )
70 1rp
 |-  1 e. RR+
71 ifcl
 |-  ( ( 1 e. RR+ /\ U e. RR+ ) -> if ( 1 <_ U , 1 , U ) e. RR+ )
72 70 69 71 sylancr
 |-  ( ph -> if ( 1 <_ U , 1 , U ) e. RR+ )
73 9 72 eqeltrid
 |-  ( ph -> X e. RR+ )
74 50 69 73 3jca
 |-  ( ph -> ( T e. CC /\ U e. RR+ /\ X e. RR+ ) )
75 33 74 jca
 |-  ( ph -> ( ( K e. NN /\ ( A ` K ) =/= 0 ) /\ ( T e. CC /\ U e. RR+ /\ X e. RR+ ) ) )