Step |
Hyp |
Ref |
Expression |
1 |
|
ftalem.1 |
|- A = ( coeff ` F ) |
2 |
|
ftalem.2 |
|- N = ( deg ` F ) |
3 |
|
ftalem.3 |
|- ( ph -> F e. ( Poly ` S ) ) |
4 |
|
ftalem.4 |
|- ( ph -> N e. NN ) |
5 |
|
ftalem6.5 |
|- ( ph -> ( F ` 0 ) =/= 0 ) |
6 |
|
fveq2 |
|- ( k = n -> ( A ` k ) = ( A ` n ) ) |
7 |
6
|
neeq1d |
|- ( k = n -> ( ( A ` k ) =/= 0 <-> ( A ` n ) =/= 0 ) ) |
8 |
7
|
cbvrabv |
|- { k e. NN | ( A ` k ) =/= 0 } = { n e. NN | ( A ` n ) =/= 0 } |
9 |
8
|
infeq1i |
|- inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) = inf ( { n e. NN | ( A ` n ) =/= 0 } , RR , < ) |
10 |
|
eqid |
|- ( -u ( ( F ` 0 ) / ( A ` inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^c ( 1 / inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) = ( -u ( ( F ` 0 ) / ( A ` inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^c ( 1 / inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) |
11 |
|
fveq2 |
|- ( r = s -> ( A ` r ) = ( A ` s ) ) |
12 |
|
oveq2 |
|- ( r = s -> ( ( -u ( ( F ` 0 ) / ( A ` inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^c ( 1 / inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^ r ) = ( ( -u ( ( F ` 0 ) / ( A ` inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^c ( 1 / inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^ s ) ) |
13 |
11 12
|
oveq12d |
|- ( r = s -> ( ( A ` r ) x. ( ( -u ( ( F ` 0 ) / ( A ` inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^c ( 1 / inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^ r ) ) = ( ( A ` s ) x. ( ( -u ( ( F ` 0 ) / ( A ` inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^c ( 1 / inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^ s ) ) ) |
14 |
13
|
fveq2d |
|- ( r = s -> ( abs ` ( ( A ` r ) x. ( ( -u ( ( F ` 0 ) / ( A ` inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^c ( 1 / inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^ r ) ) ) = ( abs ` ( ( A ` s ) x. ( ( -u ( ( F ` 0 ) / ( A ` inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^c ( 1 / inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^ s ) ) ) ) |
15 |
14
|
cbvsumv |
|- sum_ r e. ( ( inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) + 1 ) ... N ) ( abs ` ( ( A ` r ) x. ( ( -u ( ( F ` 0 ) / ( A ` inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^c ( 1 / inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^ r ) ) ) = sum_ s e. ( ( inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) + 1 ) ... N ) ( abs ` ( ( A ` s ) x. ( ( -u ( ( F ` 0 ) / ( A ` inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^c ( 1 / inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^ s ) ) ) |
16 |
15
|
oveq1i |
|- ( sum_ r e. ( ( inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) + 1 ) ... N ) ( abs ` ( ( A ` r ) x. ( ( -u ( ( F ` 0 ) / ( A ` inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^c ( 1 / inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^ r ) ) ) + 1 ) = ( sum_ s e. ( ( inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) + 1 ) ... N ) ( abs ` ( ( A ` s ) x. ( ( -u ( ( F ` 0 ) / ( A ` inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^c ( 1 / inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^ s ) ) ) + 1 ) |
17 |
16
|
oveq2i |
|- ( ( abs ` ( F ` 0 ) ) / ( sum_ r e. ( ( inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) + 1 ) ... N ) ( abs ` ( ( A ` r ) x. ( ( -u ( ( F ` 0 ) / ( A ` inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^c ( 1 / inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^ r ) ) ) + 1 ) ) = ( ( abs ` ( F ` 0 ) ) / ( sum_ s e. ( ( inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) + 1 ) ... N ) ( abs ` ( ( A ` s ) x. ( ( -u ( ( F ` 0 ) / ( A ` inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^c ( 1 / inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^ s ) ) ) + 1 ) ) |
18 |
|
eqid |
|- if ( 1 <_ ( ( abs ` ( F ` 0 ) ) / ( sum_ r e. ( ( inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) + 1 ) ... N ) ( abs ` ( ( A ` r ) x. ( ( -u ( ( F ` 0 ) / ( A ` inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^c ( 1 / inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^ r ) ) ) + 1 ) ) , 1 , ( ( abs ` ( F ` 0 ) ) / ( sum_ r e. ( ( inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) + 1 ) ... N ) ( abs ` ( ( A ` r ) x. ( ( -u ( ( F ` 0 ) / ( A ` inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^c ( 1 / inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^ r ) ) ) + 1 ) ) ) = if ( 1 <_ ( ( abs ` ( F ` 0 ) ) / ( sum_ r e. ( ( inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) + 1 ) ... N ) ( abs ` ( ( A ` r ) x. ( ( -u ( ( F ` 0 ) / ( A ` inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^c ( 1 / inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^ r ) ) ) + 1 ) ) , 1 , ( ( abs ` ( F ` 0 ) ) / ( sum_ r e. ( ( inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) + 1 ) ... N ) ( abs ` ( ( A ` r ) x. ( ( -u ( ( F ` 0 ) / ( A ` inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^c ( 1 / inf ( { k e. NN | ( A ` k ) =/= 0 } , RR , < ) ) ) ^ r ) ) ) + 1 ) ) ) |
19 |
1 2 3 4 5 9 10 17 18
|
ftalem5 |
|- ( ph -> E. x e. CC ( abs ` ( F ` x ) ) < ( abs ` ( F ` 0 ) ) ) |